Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Luminescence of InAs and AlInAs Single Quantum Dots

https://doi.org/10.25205/2541-9447-2018-13-4-117-125

Abstract

A system of quantum dots on the basis of AlxIn1-xAs / AlyGa1-yAs solid solutions has been studied. The usage of broadband AlxIn1-xAs solid solutions as the basis of quantum dots makes it possible to expand considerably the spectral emission range into the short-wave region, including the wavelength region near 770 nm being of interest for the design of aerospace systems of quantum cryptography. The optical characteristics of single AlxIn1-xAs quantum dots grown according to the Stranski-Krastanov mechanism are studied by the cryogenic microphotoluminescence method. Hanbury Brown and Twiss experiment has been carried out to measure the photon statistics. Photon correlation function demonstrates a clear photon antibunching effect, what is a direct evidence of single photon emission by AlxIn1-xAs single quantum dots. The fine structure of exciton states of quantum dots is studied in the wavelength region near 770 nm. It is shown that the splitting of exciton states is comparable with the natural width of exciton lines, which is of great interest for the design of emitters of pairs of entangled photons on the basis of AlxIn1-xAs quantum dots.

About the Authors

V. A. Gaisler
A. V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation


I. A. Derebezov
A. V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation


A. V. Gaisler
A. V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation


D. V. Dmitriev
A. V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation


References

1. Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, vol. 74, no. 1, p. 145-195.

2. Bouwmeester D., Ekert A. K., Zeilinger A. The Physics of Quantum Information. Berlin, Springer, 2000, 314 p.

3. Bimberg D., Grundmann M., Ledentsov N. Quantum Dot Heterostructures. Chichester, John Wiley & Sons, 1999. 328 p.

4. Semiconductor Nanostructures. Ed. by D. Bimberg. Berlin, Springer-Verlag, 2008, 357 p.

5. Single Quantum Dots, Fundamentals, Applications and New Concepts. Ed. by P. Michler. Berlin, Springer-Verlag, 2003, 347 p.

6. Self-Assembled Quantum Dots. Ed. by Z. M. Wang. New York, Springer Science + Business Media, LLC, 2008, 463 p.

7. Single Semiconductor Quantum Dots. Ed. by P. Michler. Berlin, Springer-Verlag, 2009, 389 p.

8. Lochmann A., Stock E., Schulz O. et al. Electrically driven single quantum dot polarized single photon emitter. Electron. Lett., 2009, vol. 45, no. 13, p. 566-567.

9. Bimberg D., Stock E., Lochmann A. et al. Quantum dots for single - and entangled - photon emitters. IEEE Photon. Journ., 2009. vol. 1, no. 1, p. 58-68.

10. Heindel T., Kessler C., Rau M. et al. Quantum key distribution using quantum dot single - photon emitting diodes in the red and near infrared spectral range. New Journ. Phys., 2012, no. 14, p. 083001.

11. Benson O., Santori C., Pelton M., Yamamoto Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett., 2000, vol. 84, no. 11, p. 2513-2516.

12. Stevenson R. M., Young R. J., Atkinson P. et al. A semiconductor source of triggered entangled photon pairs. Nature, 2006, no. 439, p. 179-182.

13. Mohan A., Felici M., Gallo P. et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photon, 2010, no. 4, p. 302-306.

14. Stevenson R. M., Salter C. L., Nilsson J. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett., 2012, vol. 108, no. 4, p. 040503.

15. Seguin R., Schliwa A., Germann T. D. et al. Control of fine-structure splitting and excitonic binding energies in selected individual InAs / GaAs quantum dots. Appl. Phys. Lett., 2006, no. 89, p. 263109.

16. Seguin R., Schliwa A., Rodt S. et al. Quantum-dot size dependence of exciton fine-structure splitting. Physica E, 2006, no. 32, p. 101-103.

17. Walls D. F., Milburn G. J. Quantum Optics. Berlin, Springer-Verlag, 2008, 437 p.

18. Grundmann M. The Physics of Semiconductors. Heidelberg, Springer, 2010, 864 p.

19. Li L. H., Chauvin N., Patriarche G., Alloing B., Fiore A. Growth - interruption - induced low - density InAs quantum dots on GaAs. J. Appl. Phys., 2008, no. 104, p. 083508.

20. Krzyzewski T. J., Jones T. S. Ripening and annealing effects in InAs / GaAs (001) quantum dot formation. J. Appl. Phys., 2004, no. 96, p. 668-674.

21. Muller-Kirsch L., Heitz R., Pohl U. W., Bimberg D. Temporal evolution of GaSb / GaAs quantum dot formation. Appl. Phys. Lett., 2001, no. 79, p. 1027-1029.

22. Pohl U. W., Potschke K., Schliwa A. et al. Evolution of a multimodal distribution of self-organized InAs / GaAs quantum dots. Phys. Rev. B, 2005, no. 72, p. 245332.

23. Mano T., Abbarchi M., Kuroda T. et al. Self-Assembly of Symmetric GaAs Quantum Dots on (111)A Substrates: Suppression of Fine-Structure Splitting. Appl. Phys. Express, 2010, no. 3, p. 065203.


Review

For citations:


Gaisler V.A., Derebezov I.A., Gaisler A.V., Dmitriev D.V. Luminescence of InAs and AlInAs Single Quantum Dots. SIBERIAN JOURNAL OF PHYSICS. 2018;13(4):117-125. (In Russ.) https://doi.org/10.25205/2541-9447-2018-13-4-117-125

Views: 184


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)