Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Rearrangement of Atomic Steps on the Silicon (001) Surface at Sublimation under Heating by Direct Electric Current

https://doi.org/10.25205/2541-9447-2018-13-4-60-66

Abstract

The combining atomic steps into bunches (groups of closely spaced steps) under conditions of electromigration, induced by direct current sample heating, on silicon surface (001) during sublimation in the temperature range 950-1150°С is studied using in situ reflection electron microscopy and ex situ atomic force microscopy. It is shown that changes in the average distance between the atomic steps bunches in time depend in a power-law manner, with an exponent of about 0.3. The data on the temperature dependence of the number of steps bunches per unit length, formed during the same time of annealing in the process of sublimation, has been obtained. It has been found that the temperature dependence is week with step-down current. The corresponding effective activation energy of the bunching process is about 0.24 eV with step-up current.

About the Authors

E. E. Rodyakina
A. V. Rzhanov Institute of Semiconductor Physics SB RAS; Novosibirsk State University
Russian Federation


S. V. Sitnikov
A. V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation


D. I. Rogilo
A. V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation


A. V. Latyshev
A. V. Rzhanov Institute of Semiconductor Physics SB RAS; Novosibirsk State University
Russian Federation


References

1. Misbah C., Pierre-Louis O., Saito Y. Crystal surfaces in and out of equilibrium: A modern view. Reviews of Modern Physics, 2010, vol. 82, no. 1, p. 981-1040.

2. Latyshev A. V., Litvin L. V., Aseev A. L. Peculiarities of step bunching on Si(001) surface induced by DC heating. Applied Surface Science, 1998, vol. 130-132, p. 139-145.

3. Nielsen J. F., Pettersen M. S., Pelz J. P. Anisotropy of mass transport on Si(001) surfaces heated with direct current. Surface Science, 2001, vol. 480, no. 1-2, p. 84-96.

4. Nishimura H., Minoda H., Tanishiro Y., Yagi K. DC heating-induced step instability on Si(001) vicinal surfaces. Surface Science, 1999, vol. 442, no. 2, p. L1006-L1012.

5. Stoyanov S., Ichikawa M. Size-scaling exponents of current-induced step bunching on silicon surfaces. Physical Review B, 1999, vol. 60, no. 23, p. 16006-16012.

6. Doi T., Koguchi M. Investigation of Si(001) stable surfaces in alternating current heating. Surface Science, 2016, vol. 653, p. 226-236.

7. Родякина Е. Е., Ситников С. В., Латышев А. В. Эффект электромиграции на поверхности кремния (001) в условиях гомоэпитаксии // Сибирский физический журнал. 2017. Т. 12, вып. 4. P. 73-78. DOI 10.25205/2541-9447-2017-12-4-73-78

8. Sato M., Mori T., Uwaha M., Hirose Y. Growth of step bunches on a Si(001) vicinal face with drift of adatoms. Journal of the Physical Society of Japan, 2004, vol. 73, no. 7, p. 1827- 1832.

9. Sato M., Uwaha M., Mori T., Hirose Y. Step bunching with alternation of structural parameters. Journal of the Physical Society of Japan, 2003, vol. 72, no. 11, p. 2850-2855.

10. Natori A., Fujimura H., Fukuda M. Step structure transformation of Si(001) surface induced by current II. Applied Surface Science, 1992, vol. 60-61, p. 85-91.

11. Sato M., Uwaha M., Hirose Y. Effect of two-dimensionality on step bunching on a Si(001) vicinal face. Journal of the Physical Society of Japan, 2006, vol. 75, no. 4, p. 4-7.

12. Sato M., Uwaha M., Saito Y. Evaporation and impingement effects on drift-induced step instabilities on a Si(001) vicinal face. Physical Review B, 2005, vol. 72, no. 4, p. 045401.

13. White S. J., Woodruff D. P. The surface structure of Si(100) surfaces using averaged LEED. Surface Science, 1977, vol. 64, no. 1, p. 131-140.

14. Mo Y. W., Kleiner J., Webb M. B., Lagally M. G. Activation energy for surface diffusion of Si on Si(001): A scanning-tunneling-microscopy study. Physical Review Letters, 1991, vol. 66, no. 15, p. 1998-2001.

15. Zandvliet H. J. W., Elswijk H. B. Morphology of monatomic step edges on vicinal Si(001). Physical Review B, 1993, vol. 48, no. 19, p. 14269-14275.

16. Latyshev A. V., Krasilnikov A. B., Aseev A. L. Application of ultrahigh vacuum reflection electron microscopy for the study of clean silicon surfaces in sublimation. epitaxy. and phase transitions. Microscopy Research and Technique, 1992, vol. 20, no. 4, p. 341-351.

17. Metois J. J., Wolf D. E. Kinetic surface roughening of Si(001) during sublimation. Surface Science, 1993, vol. 298, no. 1, p. 71-78.

18. Rodyakina E. E., Kosolobov S. S., Sheglov D. V., Nasimov D. A., Song S. A., Latyshev A. V. Atomic steps on sublimating Si (001) surface observed by atomic force microscopy. Phys. Low-Dim. Struct., 2004, vol. 1-2, p. 9-18.

19. Latyshev A. V., Aseev A. L., Krasilnikov A. B., Stenin S. I. Transformations on clean Si(111) stepped surface during sublimation. Surface Science, 1989, vol. 213, no. 1, p. 157-169.

20. Sato M., Deura K. Effect of alternation of kinetic coefficients on step instabilities on Si(001) vicinal face. Journal of Crystal Growth, 2008, vol. 310, no. 7-9, p. 1371-1375.

21. Sato M., Uwaha M., Takahashi T. Motion of step pairs during drift-induced step bunching on a Si(001) vicinal face. Journal of Crystal Growth, 2007, vol. 303, no. 1, p. 85-89.

22. Jeong S., Oshiyama A. Adsorption and Diffusion of Si Adatom on Hydrogenated Si(100) Surfaces. Physical Review Letters, 1997, vol. 79, no. 22, p. 4425-4428.


Review

For citations:


Rodyakina E.E., Sitnikov S.V., Rogilo D.I., Latyshev A.V. Rearrangement of Atomic Steps on the Silicon (001) Surface at Sublimation under Heating by Direct Electric Current. SIBERIAN JOURNAL OF PHYSICS. 2018;13(4):60-66. (In Russ.) https://doi.org/10.25205/2541-9447-2018-13-4-60-66

Views: 159


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)