Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Analysis of Coherent Structures in Circular and Chevron Jets

https://doi.org/10.25205/2541-9447-2018-13-4-46-59

Abstract

The present study reports on measurements of the spatial shape and dynamics of large-scale coherent structures in circular and chevron submerged jets by the volumetric particle image velocimetry technique. A tomographic PIV system was used for the measurements of 3D velocity fields with 2 kHz acquisition rate. The datasets of PIV velocity fields were analyzed by spatial Fourier transform over the azimuthal angle and proper orthogonal decomposition (POD). It was concluded that for the chevron jet the turbulent kinetic energy of the axisymmetric mode m = 0, related with ring-like vortices in mixing layer of the jet, was more than twice smaller in comparison with the jet from a circular nozzle.

About the Authors

S. S. Abdurakipov
Institute of Thermophysics SB RAS; Novosibirsk State University Novosibirsk
Russian Federation


V. M. Dulin
Institute of Thermophysics SB RAS; Novosibirsk State University Novosibirsk
Russian Federation


M. P. Tokarev
Institute of Thermophysics SB RAS; Novosibirsk State University Novosibirsk
Russian Federation


D. M. Markovich
Institute of Thermophysics SB RAS; Novosibirsk State University Novosibirsk
Russian Federation


References

1. Yule A. Large-scale structure in the mixing layer of a round jet. J. Fluid Mech., 1978, vol. 89, p. 413-432.

2. Liepmann D., Gharib M. The role of streamwise vorticity in the near field entrainment of round jets. J. Fluid Mech., 1992, vol. 245, p. 643-668.

3. Violato D., Scarano F. Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys. Fluids, 2011, vol. 23, no. 12, p. 124104.

4. Kuchar A., Chamberlin R. Scale model performance test investigation of exhaust system mixers for an energy efficient engine (E3) propulsion system. AIAA Journal, 1980, vol. 19800229, p. 229.

5. Presz W., Reynolds G., McCormick D. Thrust augmentation using mixer-ejector-diffuser systems. AIAA Journal, 1994, vol. 1994-0020, p. 20.

6. Mabe J., Calkins F., Butler G. Boeing’s variable geometry chevron, morphing aerostructure for jet noise reduction. AIAA Journal, 2016, vol. 2006-2142, p. 2142.

7. Smith L., Majamaki A., Lam I., Delabroy O., Karagozian A., Marble F., Smith O. Mixing enhancement in a lobed injector. Phys. Fluids, 1997, vol. 9, no. 3, p. 667-678.

8. Freund J. Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech., 2001, vol. 438, p. 277-305.

9. Uzun A., Hussaini M. Simulation of noise generation in the near-nozzle region of a chevron nozzle jet. AIAA Journal, 2009, vol. 47, no. 8, p. 1793-1810.

10. Becker H., Massaro T. Vortex evolution in a round jet. J. Fluid Mech., 1968, vol. 31, no. 3, p. 435-448.

11. Uzun A., Alvi F., Colonius T., Hussaini M. Spatial stability analysis of subsonic jets modified for low-frequency noise reduction. AIAA Journal, 2015, vol. 53, no. 8, p. 2335-2358.

12. Hu H., Saga T., Kobayashi T., Taniguchi N. A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique. Phys. Fluids, 2001, vol. 13, no. 11, p. 3425-3441.

13. Nastase I., Meslem A., Gervais P. Primary and secondary vortical structures contribution in the entrainment of low Reynolds number jet flows. Exp. Fluids, 2008, vol. 44, no. 6, p. 1027-1033.

14. El Hassan M., Meslem A. Time-resolved stereoscopic particle image velocimetry investigation of the entrainment in the near field of circular and daisy-shaped orifice jets. Phys. Fluids, 2010, vol. 22, no. 3, p. 035107.

15. Lin C., Jeng M., Chao Y. The stabilization mechanism of the lifted jet diffusion flame in the hysteresis region. Exp. Fluids, 1993, vol. 14, no. 5, p. 353-365.

16. Demare D., Baillot F. The role of secondary instabilities in the stabilization of a nonpremixed lifted jet flame. Phys. Fluids., 2001, vol. 13, no. 9, p. 2662-2670.

17. Gutmark E., Parr T., Hanson-Parr D., Schadow K. Azimuthal structure of an annular diffusion flame. Combust. Flame, 1989, vol. 75, no. 3, p. 229-240.

18. Longmire E., Eaton J., Elkins C. Control of jet structure by crown-shaped nozzles. AIAA Journal, 1992, vol. 30, no. 2, p. 505-512

19. Litvinenko M., Kozlov V., Kozlov G., Grek G. Effect of streamwise streaky structures on turbulization of a circular jet. J Appl. Mech. Tech. Phys., 2004, vol. 45, no. 3, p. 349-357.

20. Kozlov G., Grek G., Sorokin A., Litvinenko Y. Influence of initial conditions at the nozzle exit on the structure of round jet. Thermophysics and Aeromechanics, 2008, vol. 15, no. 1, p. 55-68.

21. Mullyadzhanov R., Abdurakipov S., Hanjalić K. Helical structures in the near field of a turbulent pipe jet. Flow Turb. Combust., 2017, vol. 98, no. 2, p. 367-388.

22. Mullyadzhanov R., Sandberg R., Abdurakipov S., George W., Hanjalić K. Propagating helical waves as a building block of round turbulent jets. Phys. Rev. Fluids, 2018, vol. 3, no. 6, p. 062601.

23. Alekseenko S., Dulin V., Kozorezov Y., Markovich D. Effect of axisymmetric forcing on the structure of a swirling turbulent jet. Int. J. Heat Fluid Flow, 2008, vol. 29, p. 1699-1715.

24. Abdurakipov S., Dulin V., Kozinkin L., Tokarev M., Markovich D. Tomographic PIV measurements of azimuthal modes in jets issuing from circular and chevron nozzles. In: Proceedings of 18 International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics. Lisbon, Portugal, July 4-7. 2016.

25. Alekseenko S., Abdurakipov S., Hrebtov M., Tokarev M., Dulin V., Markovich D. Coherent structures in the near-field of swirling turbulent jets: A tomographic PIV study. Int. J. Heat Fluid Flow, 2018, vol. 70, no. 1, p. 363-379.

26. Wieneke B. Volume self-calibration for 3D particle image velocimetry. Exp. Fluids, 2008, vol. 45, p. 549-456.

27. Atkinson C., Soria J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids, 2009, vol. 47, p. 553-568.

28. Novara M., Batenburg J., Scarano F. Motion tracking-enhanced MART for tomographic PIV. Meas. Science Tech., 2010, vol. 21, p. 035401.

29. Holmes P., Lumley J., Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge, Cambridge University Press, 1998.

30. Kerschen G., Golinval J., Vakakis A., Bergman L. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dynamics, 2005, vol. 41, no. 1-3, p. 147-169.

31. Markovich D., Abdurakipov S., Chikishev L., Dulin V., Hanjalic K. Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys. Fluids, 2014, vol. 26, p. 065109.

32. Markovich D., Dulin V., Abdurakipov S., Kozinkin L., Tokarev M., Hanjalić K. Helical modes in low-and high-swirl jets measured by tomographic PIV. J. Turbulence, 2016, vol. 17, no. 7, p. 678-698.


Review

For citations:


Abdurakipov S.S., Dulin V.M., Tokarev M.P., Markovich D.M. Analysis of Coherent Structures in Circular and Chevron Jets. SIBERIAN JOURNAL OF PHYSICS. 2018;13(4):46-59. (In Russ.) https://doi.org/10.25205/2541-9447-2018-13-4-46-59

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)