Preview

Сибирский физический журнал

Расширенный поиск

Оценка конвективного массопереноса при импульсном лазерном нагреве поверхности стали

https://doi.org/10.25205/2541-9447-2018-13-4-25-34

Аннотация

Проведено численное моделирование процессов при легировании поверхностного слоя металла в подложке под воздействием импульсного лазерного излучения. С помощью предлагаемой математической модели, описывающей термо- и гидродинамические явления, рассматриваются процессы, включающие разогрев металла, его плавление, конвективный тепломассоперенос в расплаве и затвердевание после окончания импульса. По результатам численных экспериментов в зависимости от условий нагрева подложки определены два варианта формирования структуры течения в расплаве и распределения легирующего вещества.

Об авторе

В. Н. Попов
Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН
Россия


Список литературы

1. Bernatsky A. V. Laser surface alloying of steel items (Review). The Paton Welding Journal, 2013, no. 12, p. 2-8.

2. Tarasova T. V. Distribution of elements in the molten pool produced by laser alloying. Metal Science and Heat Treatment, 2002, no. 3-4, p. 124-127. DOI 10.1023/A:1019674205189

3. Majumdar J. D. Development of wear resistant composite surface of mild steel by laser surface alloying with silicon and reactive melting. Mater. Lett., 2008, no. 62, p. 4257-4259. DOI 10.1016/j.matlet.2008.06.042

4. Popov V. N., Tsivinskii M. Y., Tsivinskaya Y. S. Numerical evaluation of the contribution of a surface-active substance in melt to convective mass transfer caused by pulsed laser action on metal. Math. Models Comput. Simul., 2012, vol. 4, no. 5, p. 527-533. DOI 10.1134/ S2070048212050080

5. Ribic B., Tsukamoto S., Rai R., DebRoy T. Role of surface active elements during keyhole mode laser welding. Journal of Physics D: Applied Physics, 2011, vol. 44 (48), p. 485203. DOI 10.1088/0022-3727/44/48/485203

6. Ehlen G., Ludwig A., Sahm P. R. Simulation of Time-Dependent Pool Shape during Laser Spot Welding: Transient Effects. Metall. Mater. Trans. A., 2003, vol. 34a, p. 2947-2961. DOI 10.1007/s11661-003-0194-x

7. Sarkar S., Mohan Raj P., Chakraborty S., Dutta P. Three dimensional computational modeling of momentum, heat and mass transfer in a laser surface alloying process. Numer. Heat Transfer A., 2002, vol. 42, p. 307-326. DOI 10.1080/10407780290059576

8. Sahoo P., DebRoy T., McNallan M. J. Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy. Metall. Trans. B., 1988, vol. 19B, p. 483-491. DOI 10.1007/BF02657748

9. Самарский А. А., Моисеенко Б. Д. Экономичная схема сквозного счета для многомерной задачи Стефана // Журн. вычисл. мат. и мат. физ. 1965. Т. 5, № 5. С. 816-827.

10. Harlow F. H., Welch J. E. Numerical calculation of time-depend viscous incompressible flow of fluid with free surface. Phys. Fluids, 1965, vol. 8, p. 2182-2189. DOI 10.1063/1.1761178

11. Chorin A. J. A numerical method for solving incompressible viscous flow problems. J. Comput. Phys., 1967, vol. 2, p. 12-26. DOI 10.1006/jcph.1997.5716

12. Самарский А. А. Теория разностных схем. М.: Наука, 1977. 656 с.

13. Zhengtao Gan, Gang Yu, Xiuli He, Shaoxia Li. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. International Journal of Heat and Mass Transfer, 2017, vol. 104, p. 28-38. DOI 10.1016/ j.ijheatmasstransfer.2016.08.049


Рецензия

Для цитирования:


Попов В.Н. Оценка конвективного массопереноса при импульсном лазерном нагреве поверхности стали. Сибирский физический журнал. 2018;13(4):25-34. https://doi.org/10.25205/2541-9447-2018-13-4-25-34

For citation:


Popov V.N. Evaluation of Convective Mass Transfer during Pulsed Laser Heating of Steel Surface. SIBERIAN JOURNAL OF PHYSICS. 2018;13(4):25-34. (In Russ.) https://doi.org/10.25205/2541-9447-2018-13-4-25-34

Просмотров: 111


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)