Semiconductor Nanostructures for Quantum Technologies (Review)
https://doi.org/10.25205/2541-9447-2025-20-2-68-88
Abstract
This publication considers examples of the development and application of semiconductor nanostructures for the implementation of quantum technologies in solving problems of developing modern information and telecommunication technologies. These include: heterojunction field-effect transistors with high electron mobility; multi-element matrix infrared photodetectors on multilayer heterostructures with quantum wells; quantum cascade lasers; vertical-cavity semiconductor lasers; sources of single and entangled photons with quantum dots in the active region; spin structures in the germanium-silicon epitaxial system with quantum dots. The application of semiconductor nanostructures is expected in new areas of semiconductor electronics, such as the development of universal memory, neuroprocessors, spintronics, quantum computers and quantum cryptography, elements of microwave and terahertz electronics, optoelectronics and radiophotonics, thermal and night vision devices.
About the Author
A. L. AseevRussian Federation
Aleksander L. Aseev, Doctor of Sciences (Physics and Mathematics), Academician of RAS
Novosibirsk
References
1. Alferov Zh. I. Heterojunctions in semiconductors and devices based on them. In: Physics and Life. Moscow, S. Petersburg, Nauka publ., 2006, рр. 107–168. (in Russ.)
2. Mimura T. The Early History of the High Electron Mobility Transistor (HEMT). IEEE Transactions on Microwave Theory and Technologies, 2002, vol. 50, no. 3, pр. 780–782. (in Russ.)
3. Zhuravlev K. S., Toropov A. I., Shamirzaev T. S., Bakarov A. K., Rakov Yu. N., Myakishev Yu. B. Application of high purity layers of AlxGa1-xAs in epitaxial structures of high power high frequency transistors. Letters to the Journal of Technical Physics, 1999, vol. 25, no. 15, рp. 8–14. (in Russ.)
4. Rakov Yu. N., Myakishev Yu. B., Zhuravlev K. S., Toropov A. I., Shamirzaev T. S., Bakarov A. K. Application of high purity layers of AlxGa1-xAs in structures of high power high frequency transistors. Electronic engineering. Ser. 1. High Frequency Technics, 2001, no. 2, рp. 51. (in Russ.)
5. Shamirzaev T. S., Toropov A. I., Bakarov A. K., Zhuravlev K. S., Rakov Yu. N., Myakishev Yu. B. Obtaining of solid solutions of AlxGa1-xAs and epitaxial structures for high power microwave transistors. Autometry, 2001, no. 3, рp. 89–96. (in Russ.)
6. Rakov Yu. N., Toropov A. I., Myakishev Yu. B., Zhuravlev K. S., Tsibaev V. P. High power pseudomorphic heterostructural field effect transistors with doped channel. 17th Intern. Crimean Conference. Microwave technology and telecommunication technologies. Sevastopol, 2007, рp. 554–555. (in Russ.)
7. Protasov D. Yu., Bakarov A. K., Toropov A. I., Ber B. Ya., Kazantsev D. Yu., Zhuravlev K. S. Mobility of two-dimensional electron gas in DA-pHEMT heterostructures with different width of δ-n-layers. Physics and technology of semiconductor, 2018, vol. 52, no. 1, pр. 48–55. (in Russ.)
8. Zhuravlev K. S., Protasov D. Yu., Bakarov A. K., Toropov A. I., Gulyaev D. V., Lapin V. G., Lukashin V. M., Pashkovsky A. B. New type of heterostructures for high power pHEMT. Autometry, 2020, vol. 56, no. 5, рp. 36–43. (in Russ.)
9. Bethea G. C., Levine B. F., Asom M. T., Leibenguth R. E., Stayt J. W., Glogovsky K. G., Morgan R. A., Blackwell J. D., Parrish W. J. Long wave infrared 128x128 AlxGa1-xAs/GaAs quantum camera and imaging system. IEEE Trans. On Electron Devices, 1993, vol. 40, no. 11, рp. 1957–1963.
10. Ovsyuk V. N., Toropov A. I., Shashkin V. V. Matrix photodetectors on base on multilayered heterosructures with quantum wells GaAs/AlGaAs. In: Matrix Photodetectors of the Infrared Range. Ed. Sinitsa S. P. Novosibirsk: Science, 2001, рp. 242–264. (in Russ.)
11. Toropov A. I., Shashkin V. V. IR-photodetectors on multilayered hetostructures GaAs/AlGaAs. In: Nanotechnologies in Semiconductor Electronics. Ed. Aseev A. L. SB RAS Publ., 2004, рp. 252–272. (in Russ.)
12. Fabrication of matrix photosensitive elements on the base of multilayered structures GaAS/ AlGaAs with quantum wells. In: Actual problems of semiconductor physics. Nanostructures, epitaxy, photonics and electronics. Ed. A.V. Latyshev, A.V. Dvurechenskiy. IFP SB RAS Publ., 2017, рp. 123–124. (in Russ.)
13. Kazarinov R. F., Suris R. A. Possibility of the amplification of electromagnetic waves in a semiconductors with a superlattice. Physics and technology of semiconductors, 1971, vol. 5, no. 4, p. 797. (in Russ.)
14. Faist J., Capasso F., Siveo D.I., Hutchison A. I., Cho A. Y. Quantum Cascade Laser. Science, 1994, no. 264, рp. 553–556.
15. Zhukov A. E., Zirlin G. E., Alferov Zh. I. et al. Multilayered heterostructures for quantum cascade lasers of teraherz range. Physics and technology of semiconductors, 2016, vol. 50, no. 5, рp. 674. (in Russ.)
16. Khabibullin R. A., Seredina M. A., Suris R. A. Application of quantum cascade lasers of terahertz range. Terahertz photonics and optoelectronics. Ed. V. Ya. Panchenko. Moscow, Russian Academy of Sciences, 2024, рp. 464–521. (in Russ.)
17. Paulish A. G., Novgorodov B. N., Khryashchev S. V., Kuznetsov S. A. Teraherz visualizer on the base of THz-IR-converter. Autometry, 2019, vol. 55, nо. 1, рр. 55–63. (in Russ.)
18. Teraherz visualizer on the base of THz-IR-converter. Actual problems of semiconductor physics. Nanostructures, epitaxy, photonics and electronics. Ed. A.V. Latyshev. IFP SB RAS Publ., 2020, рр.186–188. (in Russ.)
19. Sale T. E. Vertical Cavity Surface Emitting Lasers. John Wiley & Sons. Inc. New York., 1995.
20. Vertical Cavity Surface Emitting Lasers: Design, Fabrication, Characterization and Application. Ed. C.W. Wilsmen, H. Temkin, L. Coldren. Cambridge University Press, 1999.
21. Vertical-Cavity Surface-Emitting Lasers: Technology and Applications. Ed. J. Cheng, N. K. Dutta. Gordon and Breach Science Publ., 2000.
22. Gaisler V. A., Toropov A. I. Nanotechnology in semiconductor electronics. 2004. Ed. A. L. Aseev. SB RAS Publ., рр. 272–298. (in Russ.)
23. Gutakovsky A. K., Latyshev A. V., Chuvilin A. L. The structure of defects and interfaces in semiconductor heterosystems. Novosibirsk, Parallel Publ, 2016, рр. 179–182. (in Russ.)
24. Gaisler V. A., Geisler A. V., Derebezov I. A., Yaroshevich A. S., Bakarov A. K., DmitrievD.V., Kalagin A. K., Toropov A. I. et al. Superminiature radiation sources based on semiconductor nanostructure. Jubilee collection of Selected works of the Rzhanov Institute of Semiconductor Physics, Ed. A.V. Latyshev, A.V. Dvurechenskiy, A.L. Aseev. Novosibirsk, Parallel Publ., 2014, рр. 378–400. (in Russ.)
25. Gaisler V. A., Derebezov I. A., Gaisler A. V., Yaroshevich A. S., Bakarov A. K., Dmitriev D. V., Toropov A. I. et al. Vertical cavity lasers for miniature quantum frequency standards. Autometry, 2021, vol. 57, no. 5, pр. 4–10. (in Russ.)
26. Skvortsov M. N., Ignatovich S. M., Vishnyakov V. I., Kvashnin N. L., Mesenzova I. S. et al. Miniature quantum frequency standard based on phenomenon of quantum level trapping in vapour of 78Rb atoms. Quantum electronics, 2020, vol. 50, no. 6, рp. 576–580. (in Russ.)
27. Gaisler V. A., Derebezov I. A., Gaisler A. V., Bakarov A. K., Toropov A. I., Shcheglov D. V., Laiyshev A. V., Aseev A. L. Non-classical emitters based on quantum dots. Bulletin of the Russian Foundation for Basic Research, 2015, no. 4, рp. 42–54. (in Russ.)
28. Haisler V. A., Haisler A. V., Derebezov I. A., Yaroshevich A. S., Bakarov A. K., DmitrievD.V., Kalagin A. K., Toropov A. I. Superminiature radiation sources based on semiconductor nanostructures. Advances of semiconductor nanostructures. Growth, Characteristics, Properties and Applications. Eds. A. V. Latyshev, A. V. Dvurechensky, A. L. Aseev. Elsevier, 2017, рр. 437–461.
29. Gaisler V. A., Derebezov I. A., Gaisler A. V., Dmitriev D. V., Toropov A. I. et al. Superminiature radiation sources based on AlInAs quantum dots. Actual problems of semiconductor physics. Nanostructures, epitaxy, photonics and electronics. Ed. A. V. Latyshev. Ed. IFP SB RAS Publ., 2018, рр. 104–105. (in Russ.)
30. Derebezov I. A., 24. Gaisler V. A., Gaisler A. V., Dmitriev D. V., Toropov A. I., Von Helversen M., de la Haye K., S. Bunoar, Raizenshtein S. Nonclassic light sources ,fsed on selective positioned microlens structures and (111) In(Ga)As quantum dots. Physics and Technics of semiconductors, 2019, vol. 53, no. 10, рp. 1338–1342. (in Russ.)
31. Dvurechenskii A. V., Yakimov A. I. Nanoheterostructures with quantum dots based on Silicon. Jubilee collection of Selected works of the Rzhanov Institute of Semiconductor Physics. Eds. A. V. Latyshev, A. V. Dvurechenskiy, A. L. Aseev. Novosibirsk, Parallel Publ., 2014, рр. 76– 101. (in Russ.)
32. Phillips J. Evaluation of the fundamental properties of quantum dot detectors. Journal of Applied Physics, 2002, vol. 91, no. 7, рp. 4590–4594.
33. Yakimov A. I., Kiriyenko V. V., Bloshkin A. A., Armbrister V. A., Dvurechenskiy A. V. Plasmon-polariton photodetectors of the mid-infrared range based on Ge quantum dots in Si. J. Appl. Phys, 2017, vol. 122, no. 313, рp. 133101.
34. Zinovieva A. F., Timofeev V. A., Nenashev A. V., Dvurechenskiy A. V., Kulik A. V. Localization of electrons in Ge/Si heterostructures with double quantum dots detected by the electron spin resonance method. Phys. Rev. B., 2013, vol. 88, рр. 255308.
35. Zinovieva A. F., Dvurechenskiy A. V., Gornov A. Yu., Zarodnyuk T. S., Koshkarev A. A., Nenashev A. V. Quantum logic operations on spin states in a continuous microwave field. Microelectronics, 2018, vol. 47, no. 4, рp. 49–58. (in Russ.)
36. Aseev A. L. Semiconductors and Nanotechnologies. Novosibirsk, NSU publ., 2023, 143 р. (in Russ.)
Review
For citations:
Aseev A.L. Semiconductor Nanostructures for Quantum Technologies (Review). SIBERIAN JOURNAL OF PHYSICS. 2025;20(2):68-88. (In Russ.) https://doi.org/10.25205/2541-9447-2025-20-2-68-88





















