Mathematical Simulation of the Pulsed Fulfilling with the Hydrogen of the Vacuumed Tube
https://doi.org/10.25205/2541-9447-2025-20-2-54-67
Abstract
The problem concerned rapid pulsed hydrogen filling of a long, vacuumed cylindrical tube was solved. The numerical solution was performed with a system of gas dynamics equations. According to the results of this solution provide a picture of the spatiotemporal dynamics of the tube filling with hydrogen injected through nozzles installed at its ends. Results of the simulation demonstrated that the chosen engineering and physical solution for filling the tube with hydrogen satisfies the requirements for creating a thin plasma column with a high electron concentration.
About the Authors
A. V. ArzhannikovRussian Federation
Andrey V. Arzhannikov, Chief Researcher
Novosibirsk
D. A. Samtsov
Russian Federation
Denis A. Samtsov, Senior Researcher
Novosibirsk
S. L. Sinitsky
Russian Federation
Stanislav L. Sinitsky, Senior Researcher
Novosibirsk
D. A. Starostenko
Russian Federation
Dmitry A. Starostenko, Researcher
Novosibirsk
D. V. Khmelnitsky
Russian Federation
Dmitry V. Khmelnitsky, Doctor of Physical and Mathematical Sciences
Snezhinsk
D. F. Ganeeva
Russian Federation
Dilyara F. Ganeeva, Junior Researcher
Snezhinsk
D. A. Mastyuk
Russian Federation
Dmitry A. Mastyuk, Junior Researcher
Snezhinsk, Chelyabinsk
R. V. Protas
Russian Federation
Roman V. Protas, PhD in Engineering
Snezhinsk
D. V. Petrov
Russian Federation
Dmitry V. Petrov, Doctor of Physical and Mathematical Sciences, Corresponding Member of the Russian Academy of Sciences
Snezhinsk
References
1. Arzhannikov A. V., Burdakov A. V., Kalinin P. V., Kuznetsov S. A., Makarov M. A., Mekler K. I., Polosatkin S. V., Postupaev V. V., Rovenskikh A. F., Sinitsky S. L., Sklyarov V. F., Stepanov V. D., Sulyaev Yu. S., Thumm M. K. A., Vyacheslavov L. N. Subterahertz generation by strong langmuir turbulence at two-stream instability of high current 1-MeV REBs. Vestnik Novosibirsk State University. Series: Phys, 2010, vol. 5(4), pp. 44–49, doi: 10.54362/1818-7919-2010-5-4-44-49
2. Arzhannikov A. V., Timofeev I. V. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence. Plasma Physics and Controlled Fusion, 2012, vol. 54(10), p. 105004, doi: 10.1088/0741-3335/54/10/105004
3. Arzhannikov A. V., Sinitsky S. L., Popov S. S., Timofeev I. V., Samtsov D. A., Sandalov E. S., Kalinin P. V., Kuklin K. N., Makarov M. A., Rovenskikh A. F., Stepanov V. D., Annenkov V. V., Glinsky V. V., Energy Content and Spectral Composition of a Submillimeter Radiation Flux Generated by a High-Current Electron Beam in a Plasma Column With Density Gradients. IEEE Transactions on Plasma Science, 2022, vol. 50, no. 8, pp. 2348–2363, doi: 10.1109/TPS.2022.3183629
4. Arzhannikov A. V., Sinitsky S. L., Samtsov D. A., Timofeev I. V., Sandalov E. S., Popov S. S., Atlukhanov M. G., Makarov M. A., Kalinin P. V., Kuklin K. N., Rovenskikh A. F., Stepanov V. D., The Frequency Spectrum and Energy Content in a Pulse Flux of Terahertz Radiation Generated by a Relativistic Electron Beam in a Plasma Column with Different Density Distributions. Plasma Phys. Rep, 2024, vol. 50, no. 3, pp. 331–341, doi: 10.1134/S1063780X24600051
5. Arzhannikov A. V., Burdakov A. V., Deychuli P. P., Koidan V. S., Konyukhov V. V., Meckler K. I., Increasing the interaction efficiency of a high-current relativistic electron beam with plasma. Letters to JETP, 1978, vol. 27, iss. 3, pp. 173– 176. (in Russ.)
6. Arzhannikov A. V., Burdakov A. V., Burmasov V. S., Ivanov I. A., Kuznetsov S. A., Kuklin K. N., Mekler K. I., Polosatkin S. V., Postupaev V. V., Rovenskikh A. F., Sinitsky S. L., Sklyarov V. F. Plasma system of the GOL-3T facility. Plasma Phys. Rep., 2015, vol. 41, no. 11, pp. 863–872, doi: 10.1134/S1063780X1511001X
7. Arzhannikov A. V., Ivanov I. A., Kalinin P. V., Kasatov A. A., Makarov M. A., Mekler K. I., Rovenskikh A. F., Samtsov D. A., Sandalov E. S., Sinitsky S. L. Creation of plasma column with different density gradients to generate terahertz radiation during beam-plasma interaction. Journal of Physics: Conf. Ser., IOP Publishing, 2020, vol. 1647, no. 1, p. 012011, doi: 10.1088/1742-6596/1647/1/012011
8. Timofeev I. V., Annenkov V. V., Arzhannikov A. V. Regimes of enhanced electromagnetic emission in beam-plasma interactions. Physics of Plasmas, 2015, vol. 22, no. 11, p. 113109, doi: 10.1063/1.4935890
9. Arzhannikov A. V., Timofeev I. V. Intense Beam-Plasma Interaction As A Source Of Sub-Millimeter Radiation. Bulletin of NSU. Series: Physics, 2016, vol. 11, no. 4, pp. 78–104, doi: 10.54362/1818-7919-2016-11-4-78-104
10. Arzhannikov A. V., Sinitsky S. L., Starostenko D. F., Logachev P. V., Bak P. A., Nikiforov D. A., Popov S. S., Kalinin P. V., Samtsov D. A., Sandalov E. S., Atlukhanov M. G., Grigoriev A. N., Vorobyov S. O., Petrov D. V., Protas R. V. Beam-Plasma Generator of the THz Radiation Based on an Induction Accelerator (LIA-PET Project). Siberian Journal of Physics, 2023, vol. 18, no. 1, pp. 28–42, doi: https://doi.org/10.25205/2541-9447-2023-18-1-28-42 (in Russ.)
Review
For citations:
Arzhannikov A.V., Samtsov D.A., Sinitsky S.L., Starostenko D.A., Khmelnitsky D.V., Ganeeva D.F., Mastyuk D.A., Protas R.V., Petrov D.V. Mathematical Simulation of the Pulsed Fulfilling with the Hydrogen of the Vacuumed Tube. SIBERIAN JOURNAL OF PHYSICS. 2025;20(2):54-67. (In Russ.) https://doi.org/10.25205/2541-9447-2025-20-2-54-67





















