Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Photophysical Activity for Products of Slow Thermal Decomposition of 3-nitro-4,5-dihydro-1,2,4-triazole-5-one (NTO)

https://doi.org/10.25205/2541-9447-2025-20-1-67-74

Abstract

 This paper presents the results of a study of the photophysical activity for products of slow thermal decomposition of energetic material 3-nitro-4,5-dihydro-1,2,4-triazole-5-one (NTO). The spectral properties, color palette, and photoluminescence of NTO decomposition products are shown. It has been found that with an increase in the irradiation wave length from 400 to 700 nm, the output of photons with lower energy increases.

About the Authors

A. V. Stankevich
Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences; Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
Russian Federation

 Alexandr V. Stankevich - Candidate of Science (Engineering) 

Ekaterinburg



D. S. Yachevskii
Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
Russian Federation

Danil S. Yachevskii - Researcher

Ekaterinburg



G. L. Rusinov
Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
Russian Federation

 Gennady L. Rusinov - Candidate of Science (Chemistry)

Ekaterinburg 



References

1. Lee K. M. et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research, 2016, vol. 88, pp. 428–448.

2. Park H. et al. Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, vol. 15, pp. 1–20.

3. Di Paola A., Bellardita M., Palmisano L. Brookite, the least known TiO2 photocatalyst. Catalysts, 2013, vol. 3(1), pp. 36−73. doi:10.3390/catal3010036

4. Caux M. et al. Impact of the annealing temperature on Pt/g-C3N4 structure, activity and selectivity between photodegradation and water splitting. Catalysis Today, 2017, vol. 287, pp. 182−188. doi:10.1016/j.cattod.2016.11.007

5. Chen X. et al. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Scientific reports, 2016, vol. 6(1), p. 28558. doi:10.1038/srep28558

6. Bradford M. C. J., Vannice M. A. CO2 reforming of CH4. Catal. Rev. Sci. Eng., 1999, vol. 41(1), pp. 1−42. doi:10.1081/CR-100101948

7. Artyunov V. S., Krylova O. V. Oxidative transformations of methane. Nauka, 1998, 361 p.

8. Maeda K. et al. Photocatalyst releasing hydrogen from water. Nature, 2006, vol. 440(7082), pp. 295−295. doi:10.1038/440295a

9. Kudo A. Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003, vol. 7, pp. 31–38. doi:10.1023/A:1023480507710

10. Rajalakshmi K. et al. Photocatalytic reduction of carbon dioxide by water on titania: Role of photophysical and structural properties. Indian J. Chem., vol. 51A(03), 2012, pp. 411-419. http://nopr.niscpr.res.in/handle/123456789/13652

11. Irgashev R. A. et al. Synthesis, photophysical and electrochemical properties of novel 6, 12-di (thiophen-2-yl) substituted indolo [3, 2-b] carbazoles. Tetrahedron, 2014, vol. 70(31), pp. 4685-4696. doi:10.1016/j.tet.2014.04.093

12. Tebello Nyokong, Edith Antunes. Photochemical and Photophysical Properties of Metallophthalocyanines. Handbook of Porphyrin Science, pp. 247–357. doi:10.1142/9789814307246_0006

13. Zinin P. V. et al. Anomalous fluorescence of the spherical carbon nitride nanostructures. Chemical Physics Letters, 2015, vol. 633, pp. 95–98. doi:10.1016/j.cplett.2015.05.020

14. Thomas A. et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008, vol. 18(41), pp. 4893-4908. doi:10.1039/B800274F

15. Hui J. et al. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, vol. 405, P. 112935. doi:10.1016/j.jphotochem.2020.112935

16. Stankevich A. V., Tolshchina S. G., Korotina A. V. et al. Mechanism, Kinetics and Thermodynamics of Decomposition for High Energy Derivatives of [1, 2, 4] Triazolo [4, 3-b] [1, 2, 4, 5] tetrazine. Molecules, 2022, vol. 27(20), P. 6966. doi:10.3390/molecules27206966

17. Petrov E. A. Kinetic aspects of the detonation production of nanodiamonds. South Siberian Scientific Bulletin, 2022, vol. 4, pp. 99–105. (in Russ.)

18. Kashkarov A. O., Pruuel E. R., Ten K. A. et al. Detonation synthesis of non-agglomerated metallic nanoparticles deposited on carbon supports. JPCS, 2019, vol. 1147(1), P. 012037. doi:10.1088/1742-6596/1147/1/012037

19. Lee K. Y., Chapman L. B., Cobura M. D. 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive. Journal of Energetic Materials, 1987, vol. 5(1), P. 27–33. doi:10.1080/07370658708012347

20. Singh G. et al. Studies on energetic compounds: Part 16. Chemistry and decomposition mechanisms of 5-nitro-2, 4-dihydro-3H-1, 2, 4-triazole-3-one (NTO). Journal of Hazardous Materials, 2001, vol. 81(1−2), pp. 67–82.

21. NTEGRA Spectra Probe Nanolab (upright configuration). User Manual (NT-MDT), 2011, P. 28.

22.


Review

For citations:


Stankevich A.V., Yachevskii D.S., Rusinov G.L. Photophysical Activity for Products of Slow Thermal Decomposition of 3-nitro-4,5-dihydro-1,2,4-triazole-5-one (NTO). SIBERIAN JOURNAL OF PHYSICS. 2025;20(1):67-74. (In Russ.) https://doi.org/10.25205/2541-9447-2025-20-1-67-74

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)