Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

MOLECULAR DYNAMICS SIMULATION OF CONFORMATIONAL STRUCTURES POLYAMPHOLYTES ON THE SURFACE OF GOLD NANOPARTICLE

https://doi.org/10.25205/2541-9447-2018-13-2-86-94

Abstract

Using molecular dynamics we studied the nature of the location polyampholytes on the surface of spherical gold nanoparticles, including adsorbed on the macrochain molecules of eosin. As a result of the molecular dynamics simulation, equilibrium conformational structures of polyampholyte polypeptides adsorbed on the surface of a spherical gold nanoparticle were obtained. A description is given of the radial distribution of the density of the links of a macromolecule adsorbed on the surface of a spherical nanoparticle on the basis of a special mathematical model of the conformational structure of a polymer created using the statistical theory of macromolecules. The dependences of the average radial concentration of atoms of polyampholyte polypeptides with differentiation by the types of links, as well as the eosin molecules adsorbed on the macrochain on a gold nanoparticle, are constructed. Approximating curves calculated on the basis of the statistical theory of macromolecules are given. The obtained results can be used to create nanosystems with a specified character of the arrangement of dye molecules, which can be used to create a luminescence-optical sensor of the concentration of molecular (including singlet) oxygen.

About the Authors

N. Yu. Kruchinin
Laser and Information Center of Biophysics Orenburg State University
Russian Federation


M. G. Kucherenko
Laser and Information Center of Biophysics Orenburg State University
Russian Federation


References

1. Yan X., Blacklock J., Li J., Möhwald H. One-pot synthesis of polypeptide-gold nano-conjugates for in vitro gene transfection // ACS Nano. 2012. Vol. 6. Is. 1. P. 111-117.

2. Stewart M. H., Huston A. L., Scott A. M., Oh E., Algar W. R., Deschamps J. R., Susumu K., Jain V., Prasuhn D. E., Blanco-Canosa J., Dawson. P. E., Medintz. I. L. Competition between Förster Resonance Energy Transfer and Electron Transfer in Stoichiometrically Assembled Semiconductor Quantum Dot-Fullerene Conjugates // ACS Nano. 2013. Vol. 7. Is. 10. P. 9489-9505.

3. Yang Y., Burkhard P. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles // Journal of Nanobiotechnology. 2012. Vol. 10:42.

4. Wang X., Wang C., Cheng L., Lee S., Liu Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy // J Am Chem Soc. 2012. Vol. 134. Is. 17. P. 7414-7422.

5. Chen Y., Cruz-Chu E. R., Woodard J., Gartia M. R., Schulten K., Liu L. Electrically induced conformational change of peptides on metallic nano-surfaces // ACS Nano. 2012. Vol. 6. Is. 10. P. 8847-8856.

6. Кучеренко М. Г., Русинов А. П., Чмерева Т. М., Игнатьев А. А., Кислов Д. А., Кручинин Н. Ю. Кинетика фотореакций в регулярной пористой наноструктуре с цилиндрическими ячейками, заполненными активаторсодержащими макромолекулами // Оптика и спектроскопия. 2009. Т. 107, № 3. С. 510-516.

7. Кучеренко М. Г., Чмерева Т. М., Измоденова С. В., Кручинин Н. Ю. Влияние структуры полимерной цепи в кислородсодержащих нанополостях пористых сред на кинетику аннигиляционной замедленной флуоресценции красителей // Фотоника молекулярных наноструктур: Материалы Междунар. конф. Оренбург, 2009. С. 26-28.

8. Kucherenko M. G., Izmodenova S. V., Kruchinin N. Yu., Chmereva T. M. Change in the Kinetics of Delayed Annihilation Fluorescence During Rearrangement of Polymer-Chain Structure in a Nanocavity of a Solid Adsorbent // High Energy Chemistry. 2009. Vol. 43. № 7. P. 592-598.

9. Кучеренко М. Г., Измоденова С. В., Чмерева Т. М., Кручинин Н. Ю., Подрезова Н. С. Кинетика диффузионно контролируемых фотореакций в приповерхностном слое фуллерен-тубуленовой наночастицы с адсорбированной полимерной цепью // Вестн. ОГУ. 2013. № 9. С. 100-109.

10. Кручинин Н. Ю., Кучеренко М. Г. Молекулярно-динамическое моделирование адсорбции полипептидов с фотоактивными молекулами поверхностью углеродной нанотрубки // Химическая физика и мезоскопия. 2016. Т. 18, №. 2. С. 225-238.

11. Гросберг А. Ю., Хохлов А. P. Статистическая физика макромолекул. М.: Наука. Гл. ред. физ.-мат. лит., 1989. 344 с.

12. Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kale L., Schulten K. Scalable molecular dynamics with NAMD // Journal of Computational Chemistry. 2005. Vol. 26. Is. 16. P. 1781-1802.

13. Mhashal A. R., Roy S. Effect of Gold Nanoparticle on Structure and Fluidity of Lipid Membrane // PLoS One. 2014. Vol. 9 Is. 12: e114152.

14. MacKerell A. D. Jr., Bashford D., Bellott M., Dunbrack R. L., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F. T., Mattos C., Michnick S., Ngo T., Nguyen D. T., Prodhom B., Reiher W. E., Roux B., Schlenkrich M., Smith J. C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins // Journal of Physical Chemistry B. 1998. Vol. 102. Is. 18. P. 3586-3616.

15. Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. Comparison of simple potential functions for simulating liquid water // J. Chem. Phys. 1983. Vol. 79. Is. 2. P. 926-935.

16. Shao Q., Hall C. K. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study // Langmuir. 2016. Vol. 32 Is. 31. P. 7888-7896.

17. Heinz H., Vaia R. A., Farmer B. L., Naik R. R. Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12-6 and 9-6 Lennard-Jones Potentials // J. Phys. Chem. C. 2008. Vol. 112. Is. 44. P. 17281-17290.

18. Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I., MacKerell A. D. Jr. CHARMM General Force Field: A Force field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Field // J. Comput. Chem. 2010. Vol. 31. Is. 4. P. 671-690.

19. Yu W., He X., Vanommeslaeghe K., MacKerell A. D. Jr. Extension of the CHARMM General Force Field to Sulfonyl-Containing Compounds and Its Utility in Biomolecular Simulations // J. Comput. Chem. 2012. Vol. 33. Is. 31. P. 2451-2468.

20. Darden T., York D., Pedersen L. Particle mesh ewald: An n log(n) method for ewald sums in large systems // J. Chem. Phys. 1993. Vol. 98. Is. 12. P. 10089-10092.


Review

For citations:


Kruchinin N.Yu., Kucherenko M.G. MOLECULAR DYNAMICS SIMULATION OF CONFORMATIONAL STRUCTURES POLYAMPHOLYTES ON THE SURFACE OF GOLD NANOPARTICLE. SIBERIAN JOURNAL OF PHYSICS. 2018;13(2):86-94. (In Russ.) https://doi.org/10.25205/2541-9447-2018-13-2-86-94

Views: 165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)