Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Structure and Properties of the Electroexplosive Coating of the TiB2-Ag System after Electron Beam Treatment

https://doi.org/10.25205/2541-9447-2024-19-3-91-108

Abstract

A coating of the TiB2-Ag system was formed through the use of sequential operations of electroexplosive spraying and electron beam processing. The values of electrical conductivity (62.0 MS/m), Vickers microhardness (0.251-0.265 GPa at the point of measurement on a silver matrix and 25-32 GPa at the point of measurement at inclusions of boride phases), nanohardness (4.48 ± 0.76 GPa) were determined), Young’s modulus (116±29 GPa), wear parameter under dry friction-sliding conditions (1.2 mm3/N • m) and friction coefficient (0.5). Switching wear resistance during accelerated tests was 7000 on and off cycles with an electrical resistance of 10.01 - 11.76 LiOhm. The thickness of the coatings is 100 microns. The coatings are formed by a silver matrix with inclusions of titanium borides located in it with three types of sizes: nanocrystalline, submicrocrystalline and microcrystalline. Quantitatively, in the structural composition among titanium borides, titanium diboride and silver (56 wt. %) are formed predominantly (41 wt. %), while other titanium borides account for 3 wt. %. Structural transformations are described using complementary methods of X-ray phase analysis, scanning and transmission electron microscopy.

About the Authors

V. V. Pochetukha
Siberian State Industrial University
Russian Federation

Vasily V. Pochetukha, Candidate of Technical Sciences, Senior Researcher

Novokuznetsk



D. A. Romanov
Siberian State Industrial University
Russian Federation

Denis A. Romanov, Doctor of Technical Sciences, Leading Researcher

Novokuznetsk



E. S. Vashchuk
Siberian State Industrial University
Russian Federation

Ekaterina S. Vashchuk, Candidate of Technical Sciences, Senior Researcher

Novokuznetsk



A. D. Filyakov
Siberian State Industrial University
Russian Federation

Artem D. Filyakov, Without an Academic Degree, Junior Researcher

Novokuznetsk



V. E. Gromov
Siberian State Industrial University
Russian Federation

Viktor E. Gromov, Doctor of Physical and Mathematical Sciences, Chief Researcher

Novokuznetsk



References

1. Slade Р. G. Electrical Contacts: Principles and Applications, Boca Raton, CRC press, 2014, 1268p.

2. Braunovic M., Myshkin N. K., Konchits V. V. Electrical Contacts: Fundamentals, Applications and Technology, Boca Raton, CRC press, 2017, 672 p.

3. Kesim M. T., Yu H., Sun Y., Aindow M., Alpay S. P. Corrosion, oxidation, erosion and performance of Ag/W-based circuit breaker contacts: A review // Corrosion Science. 2018. Vol. 135. P. 12-34.

4. Zhang H., Wang X. H., Li Y. P., Guo C. S., Zhang С. M. Preparation and characterization of silver-doped graphene-reinforced silver matrix bulk composite as a novel electrical contact material //Appl. Phys. A. 2019. Vol. 125. No. 2. P. 1-9.

5. Pons F., Cherkaoui M., Ilali I., Dominiak S. Evolution of the AgCdO contact material surface microstructure with the number of arcs // J. Electron. Mater. 2010. Vol. 39. No. 4. P. 456-463.

6. Teixeira F. D. S. M., de Carvalho Peres A. C., Gomes T. S., Visconte L. L. Y., Pacheco E. В. A. V. A Review on the Applicability of Life Cycle Assessment to evaluate the technical and environmental properties of waste electrical and electronic equipment // Journal of Polymers and the Environment. 2021. Vol. 29. P. 1333-1349.

7. Cosovic V., Cosovic A., Talijan N., Zivkovic D., Zivkovic Z. State of the art and challenges in development of electrical contact materials in the light of the RoHS directive // Sci. Sinter. 2012. Vol. 44. No. 2. P. 245-253.

8. Wang J., Liu W., Li D. M., Wang Y. P. The behavior and effect of CuO in Ag/SnO2 materials // J. Alloys Compd. 2014. Vol. 588. P. 378-383.

9. Wei Z. J., Zhang L. J., Shen T., Qiao Z., Yang H., Fan X. Effects of oxide-modified spherical ZnO on electrical properties of Ag/ZnO electrical contact material // J. Mater. Eng. Perform. 2016. Vol. 25. No. 9. P. 3662-3671.

10. Zhou X. L., Cao J. C., Li J. T., Chen J. C., Peng Y. Y., Zhang К. H. Effect of severe plastic deformation on microstructures and properties of AgCuO composites //Adv. Mater. Res. 2010. Vol. 177. P. 49-53.

11. 'Sleziona J., Wieczorek J., Dyzia M. Mechanical properties of silver matrix composites reinforced with ceramic particles // J. Achiev. Mater. Manuf. Eng. 2006. Vol. 17. No. 1-2. P. 165— 168.

12. Biyik S., Arslan F., Aydin M. Arc-erosion behavior of boric oxide-reinforced silverbased electrical contact materials produced by mechanical alloying // J. Electron. Mater. 2015. Vol. 44. No. l.P.457-466.

13. Slade P., Kossowsky R., Aspden R., Bratton R. The use of ceramic matrices infiltrated with silver for electric contact applications // IEEE Trans. Parts, Hybrids. 1974. Vol. 10. No. 1. P. 3742.

14. Wang X., Li G., Zou J., Liang S., Fan Z. Investigation on preparation, microstructure, and properties of AgTiB2 composite // J. Compos. Mater. 2011. Vol. 45. No. 12. P. 1285-1293.

15. Barsoum M. W. The MN+1AXN phases: a new class of solids; Thermodynamically stable nanolaminates // Prog. Solid State Chem. 2000. Vol. 28. No. 1-4. P. 201-281.

16. Sun Z. M. Progress in research and development on MAX phases: a family of layered ternary compounds // Int. Mater. Rev. 2011. Vol. 56. No. 3. P. 143-166.

17. Wang X. H., Zhou Y. C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review // J. Mater. Sci. Technol. 2010. Vol. 26. No. 5. P. 385-416.

18. Huang X. C., Feng Y., Qian G., Zhang J. C., Zhang X. B. Influence of breakdown voltages on arc erosion of a Ti3AlC2 cathode in an air atmosphere // Ceram. Int. 2017. Vol. 43. No. 13. P. 10601-10605.

19. Liu M., Chen J., Cui H., Liu S., Sun X., Xie M. Temperature-driven deintercalation and structure evolution of Ag/Ti3AlC2 composites // Ceram. Int. 2018. Vol. 44. No. 15. P. 18129-18134.

20. Ding J. X., Tian W. B., Wang D. D., Chen J., Yang Y., Sun Z. M. Corrosion and degradation mechanism of Ag/Ti3AlC2 composites under dynamic electric arc discharging // Corrosion Sci. 2019. Vol. 156. P. 147-160.

21. Zhang M., Tian B. W., Zhang P. G., Ding J. X., Zhang Y. M., Sun Z. M. Microstructure and properties of Ag-Ti3SiC2 contact materials prepared by pressureless sintering // Int. J. Miner. Metall. Mater. 2018. Vol. 25. No. 7. P. 810-816.

22. Wang D. D., Tian W. B., Lu C. J., Ding J. X., Zhu Y. F., Zhang M., Zhang P. G., Sun Z. M. Comparison of the interfacial reactions and properties between Ag/Ti3AlC2 and Ag/Ti3SiC2 electrical contact materials // J. Alloys Compd. 2020. Vol. 857. 157588.

23. Huang X., Feng Y., Ge J., Li L., Li Z., Ding M. Arc erosion mechanism of Ag-Ti3SiC2 material // J. Alloys Compd. J. Alloys Compd. 2020. Vol. 817. P. 152741.

24. Ding J. X., Tian W. B., Wang D. D., Zhang P. G., Chen J., Sun Z. M. Arc Erosion and degradation mechanism of Ag/Ti2AlC composite // Acta Metall. Sin. 2019. Vol. 55. No. 5. P. 627-637.

25. Ding J. X., Huang P. Y., Zha Y. H., Wang D., Zhang P. G., Tian W. B., Sun Z. M. Highpurity Ti2AlC powder: preparation and application in Ag-based electrical contact materials // J. Inorg. Mater. 2020. Vol. 35. No. 6. P. 729-734.

26. Ding J. X., Tian W. B., Zhang P. G., Zhang M., Chen J., Zhang Y., Sun Z. M. Preparation and arc erosion properties of Ag/Ti2SnC composites under electric arc discharging // Journal of Advanced Ceramics. 2019. Vol. 8. No. 1. P. 90-101.

27. Ding J. X., Tian W. B., Wang D. D., Zhang P. G., Chen J., Zhang Y., Sun Z. M. Microstructure evolution, oxidation behavior and corrosion mechanism of Ag / Ti2SnC composite during dynamic electric arc discharging // J. Alloys Compd. 2019. Vol. 785. No. 1. P. 1086-1096.

28. Romanov D. A., Moskovskii S. V., Gromov V. E. Surface Structure Modification and Hardening of Al-Si Alloys, Boca Raton, CRC press, 2020, 266 p.


Review

For citations:


Pochetukha V.V., Romanov D.A., Vashchuk E.S., Filyakov A.D., Gromov V.E. Structure and Properties of the Electroexplosive Coating of the TiB2-Ag System after Electron Beam Treatment. SIBERIAN JOURNAL OF PHYSICS. 2024;19(3):91-108. (In Russ.) https://doi.org/10.25205/2541-9447-2024-19-3-91-108

Views: 107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)