Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Thermoelectric Properties of Chalcogenide Semiconductor Compounds and Conversion Process Efficiency

https://doi.org/10.25205/2541-9447-2024-19-1-89-96

Abstract

Achieving a maximum thermoelectric figure of merit causes an increase in the efficiency of conversion processes by improving the thermoelectric properties of the material. In this regard, it is relevant to study the thermoelectric efficiency of chalcogenide semiconductor compounds and the efficiency of the conversion process of film converters based on them. The position of the maximum value of thermoelectric efficiency is predetermined by the scattering parameters and the ratio of the mobilities and effective masses of charge carriers. Increasing the thermoelectric efficiency of the material is achieved by optimizing the thermoelectric parameters by improving the properties, which leads to optimization of the concentration of charge carriers. Improving the thermoelectric properties of the material and increasing the efficiency of conversion processes is ensured when the concentration corresponds to the optimal value. The use of film transducers provides information in the process of monitoring and measuring physical quantities, as well as in the manufacture of high-tech products.

About the Authors

D. G. Mustafaeva
North Caucasus Mining and Metallurgical Institute (State Technological University)
Russian Federation

Dzhamilya G. Mustafaeva - Candidate of Technical Sciences

Vladikavkaz



T. T. Magkoev
North Ossetian State University named after K. L. Khetagurova
Russian Federation

Tamerlan T. Magkoev - Doctor of Physical and Mathematical Sciences

Vladikavkaz



References

1. Richner P., Gaspar P.G., Goncalves L.C., Almeida D. Experimental results analysis of the energy conversion effi ciency of thermoelectric generators // The Renewable Energy & Power Quality J. 2011. Vol. 1. № 9. P. 278–282.

2. Twaha S., Zhu J., Yan Y., Li B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement // Renewable Sustainable Energy Rev. 2016. Vol. 65. P. 698–726.

3. Champier D. Thermoelectric generators: A review of applications // Energy Convers. Manage. 2017. Vol. 140. P. 167–181.

4. Solbrekken G. L., Yazawa K., Bar-Cohen A. Thermal management of portableelectronic equipment using thermoelectric energy conversion // Conference proceeding, 9th Intersociety Conference on Thermal and thermomechanical Phenomena in Electronic Systems. 2004. Vol. 1. P. 276–283.

5. Liu W., Hu J., Zhang S., Deng M., Han C.-G., Liu Y. New trends, strategies and opportunities in thermoelectric materials: A perspective // Materials Today Physics. 2017. Vol. 1. P. 50–60.

6. Senturia S. D. Simulation and design of microsystems: A 10-year perspective // Sensors and Actuators A. Physical. 1998. Vol. 67. P. 1–7.

7. Baltes H., Paul O., Brand O. Micromachined Thermally Based CMOS Microsensors // Proceedings of the IEEE. 1998. Vol. 86. P. 1660–1678.

8. Van Herwaarden A. W., van Duyn D. C., van Oudheusden B. W., Sarro P. M. Integrated thermopile sensors // Sensors and Actuators A. Physical. 1989. Vol. 21–23. P. 621–630.

9. Middelhoek S., Hoogerwerf A. C. Classifying solid-state sensors: The S’ensor eff ect cube’ // Sensors and Actuators. 1986. Vol. 10. P. 1–8.

10. Zerrik E., Badraoui L., El Jai A. Sensors and regional boundary state reconstruction of parabolic systems // Sensors and Actuators A. Physical. 1999. Vol. 75. P. 102–117.

11. Al-Saphory R., El Jai A. Sensors characterizations for regional boundary detectability in distributed parameter systems // Sensors and Actuators A. Physical. 2001. Vol. 94. P. 1–10.

12. Zerrik E., Bourray H. Flux reconstruction: Sensors and simulations // Sensors and Actuators A. Physical. 2003. Vol. 109. P. 34–46.

13. Ylilammi M. Thermodynamics of sensors // Sensors and Actuators. 1989. Vol. 18. P. 167–178.

14. Klaassen E. H., Reay R. J., Storment C., Kovacs G. T. A. Micromachined thermally isolated circuits // Sensors and Actuators A. Physical. 1997. Vol. 58. P. 43–50.

15. Mityakov A. V., Sapozhnikov S. Z., Mityakov V. Y., Snarskii A. A., Zhenirovsky M. I., Pyrhönen J. J. Gradient heat fl ux sensors for high temperature environments // Sensors and Actuators A. Physical. 2012. Vol. 176. P. 1–9.

16. Huang S., Tao H., Lin I.-K., Zhang X. Development of double-cantilever infrared detectors: Fabrication, curvature control and demonstration of thermal detection // Sensors and Actuators A. Physical. 2008. Vol. 145–146. P. 231–240.

17. Kersjes R., Mokwa W. A fast liquid fl ow sensor with thermal isolation by oxide-fi lled trenches // Sensors and Actuators A. Physical. 1995. Vol. 46–47. P. 373–379.

18. Neda T., Nakamura K., Takumi T. A Polysilicon Flow Sensor for Gas Flow Meters // Sensors and Actuators A. Physical. 1996. Vol. 54. P. 626–631.

19. Sun J., Cui D., Zhang L., Chen X., Cai H., Li H. A micro gas chromatography column with a micro thermal conductivity detector for volatile organic compound analysis // Sensors and Actuators A. Physical. 2013. Vol. 193. P. 25–29.

20. Lee M., Yoo M. Detectivity of thin-fi lm NTC thermal sensors // Sensors and Actuators A. Physical. 2002. Vol. 96. P. 97–104.

21. Chung W.-Y., Lim J.-W., Lee D.-D., Miura N., Yamazoe N. Thermal and gas-sensing properties of planar-type micro gas sensor // Sensors and Actuators B. Chemical. 2000. Vol. 64. P. 118–123.

22. Hung S.-T., Wong S.-C., Fang W. The development and application of microthermal sensors with a mesh-membrane supporting structure // Sensors and Actuators A. Physical. 2000. Vol. 84. P. 70–75.

23. Fung S. K. H., Tang Z., Chan P. C. H., JSin. K. O., Cheung P. W. Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications // Sensors and Actuators A. Physical. 1996. Vol. 54. P. 482–487.

24. Van Herwaarden S. Physical principles of thermal sensors // Sensors and Materials. 1996. Vol. 8. P. 373–387.

25. Mustafaev G. A., Mustafaeva D. G., Mustafaev M. G. Thermophysical properties of chalcogenide semiconductor compounds and the eff ect of defects on their properties // Siberian Journal of Physics. 2023. Vol. 18, no. 2. P. 76–82 (in Russ). DOI 10.25205/2541-9447-2023-18-2-76-82


Review

For citations:


Mustafaeva D.G., Magkoev T.T. Thermoelectric Properties of Chalcogenide Semiconductor Compounds and Conversion Process Efficiency. SIBERIAN JOURNAL OF PHYSICS. 2024;19(1):89-96. (In Russ.) https://doi.org/10.25205/2541-9447-2024-19-1-89-96

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)