Frequency Spectrum of Radiation Flux Generated by Beam-Plasma System with Ten Joules Energy Content in Microsecond Pulse
https://doi.org/10.25205/2541-9447-2023-18-4-79-93
Abstract
The work reports the achievement of an energy content of 10 J per microsecond pulse in a directed flux of electromagnetic radiation in the frequency range of ~ 0.2–0.3 THz. The flux is generated by a fundamentally new method, which is realized through the pumping of upper-hybrid plasma oscillations in a magnetized plasma column with a relativistic electron beam (REB) and their subsequent transformation into a flux of electromagnetic radiation. In the described experiments at the GOL-PET facility, this method to generate THz radiation is implemented in the following way a beam of electrons with energy E ~ 0.5 MeV with a current density of (1–2) kA/cm2 is passing through a magnetized (4 T) plasma column with a density of 1014–1015 cm–3. By comparing the experimentally measured spectral composition of the radiation flux with the calculated spectrum, it is proved that this process is realized through resonant pumping of the branch of upper-hybrid plasma waves by such beam. A coordinated increase in plasma density and beam current density opens up the prospect of advancement in the generation of multi-megawatt radiation fluxes in the region of one terahertz.
Keywords
About the Authors
A. V. ArzhannikovRussian Federation
Andrey V. Arzhannikov, Doctor of Physics and Mathematics
S. L. Sinitsky
Russian Federation
Stanislav L. Sinitsky, Doctor of Physics and Mathematics
D. A. Samtsov
Russian Federation
Denis A. Samtsov, Junior Researcher
P. V. Kalinin
Russian Federation
Petr V. Kalinin, Researcher
S. S. Popov
Russian Federation
Sergey S. Popov, Doctor of Physics and Mathematics
M. G. Atlukhanov
Russian Federation
Magomedrizy G. Atlukhanov, Junior Researcher
E. S. Sandalov
Russian Federation
Evgeniy S. Sandalov, Researcher
V. D. Stepanov
Russian Federation
Vasilii D. Stepanov, Researcher
K. N. Kuklin
Russian Federation
Konstantin N. Kuklin, Junior Researcher
M. A. Makarov
Russian Federation
Maxim A. Makarov, Leading Engineer
References
1. Markelz A. G., Mittleman D. M. Perspective on terahertz applications in bioscience and biotechnology // ACS Photonics. 2022. Vol. 9, no. 4. P. 1117–1126.
2. Cooper K. B., Dengler R. J., Llombart N. [et al.]. THz imaging radar for standoff personnel screening // IEEE transactions on terahertz science and technology. 2011. Vol. 1, no. 1. P. 169– 182.
3. Michalchuk A. A. L., Hemingway J., Morrison C. A. Predicting the impact sensitivities of energetic materials through zone-center phonon up-pumping // The Journal of Chemical Physics. 2021. Vol. 154, no. 6. P. 064105.
4. Arzhannikov A. V., Burdakov A. V., Koidan V. S., Vyacheslavov L. N. Physics of REB–Plasma Interaction // Physics of REB-Plasma Interaction. Physica Scripta. 1982. Vol. 22. P. 303–310.
5. Ginzburg V. L., Zheleznyakov V. V. On the Propagation of Electromagnetic Waves in the Solar Corona, Taking Into Account the Influence of the Magnetic Field // Soviet Astronomy. 1959. Vol. 3. P. 235–246.
6. Arzhannikov A. V., Burdakov A. V., Kalinin P. V. et al. Subterahertz generation by strong langmuir turbulence at two-stream instability of high current 1-MeV REBs // Vestnik of Novosibirsk State University. Series: Physics. 2010. Vol. 5, no. 4. P. 44–49.
7. Arzhannikov A. V., Burdakov A. V., Kalinin P. V. et al. Properties of sub-THz waves generated by the plasma during interaction with relativistic electron beam // IRMMW-THz-2015 Conference Proceedings, TS-3133848.
8. Timofeev A. V. Electromagnetic waves in a magnetized plasma near the critical surface // Phys. Usp. 2004. Vol. 47. P. 555.
9. Timofeev I. V., Annenkov V. V., Arzhannikov A. V. Regimes of enhanced electromagnetic emission in beam-plasma interactions // Physics of Plasmas. 2015. Vol. 22. P. 113109. DOI: http://dx.doi.org/10.1063/1.4935890
10. Arzhannikov A. V., Burdakov A. V., Kuznetsov S. A. et al. Subterahertz emission at strong REB-plasma interaction in multimirror trap GOL-3 // Fusion Science and Technology. 2011. Vol. 59, no. 1. P. 74–77.
11. Arzhannikov A. V., and Timofeev I. V. Generation of powerful terahertz emission in a beamdriven strong plasma turbulence // Plasma Physics and Controlled Fusion. 2012. Vol. 54, no. 10. 12. Arzhannikov A. V., Burdakov A. V., Burmasov V. S. et al. Dynamics and spectral composition of subterahertz emission from plasma column due to two-stream instability of strong relativistic electron beam // IEEE Transactions on terahertz science and technology. 2016. Vol. 6, no. 2. P. 245–252.
12. Arzhannikov A. V., Burmasov V. S., Ivanov I. A., et al. Mechanisms of submillimeter wave generation by kiloampere REB in a plasma column with strong density gradients // 44th International Conference on Infrared, Millimeter and Terahertz Waves, Paris, 1–6 September 2019 (PID5878973).
13. Arzhannikov A. V., Ivanov I. A., Kasatov A. A. et al. Well-directed flux of megawatt sub-mm radiation generated by a relativistic electron beam in a magnetized plasma with strong density gradients // Plasma Physics and Controlled Fusion. 2020. Vol. 62, no. 4. P. 045002.
14. Samtsov D. A., Arzhannikov A. V., Sinitsky S. L. et al. Generation of a directed flux of megawatt THz radiation as a result of strong REB-plasma interaction in a plasma column // IEEE Transactions on Plasma Science. 2021. Vol. 49, no. 11. P. 3371–3376.
15. Arzhannikov A. V., Sinitsky S. L., Popov S. S. et al. Energy Content and Spectral Composition of a Submillimeter Radiation Flux Generated by a High-Current Electron Beam in a Plasma Column With Density Gradients // IEEE Transactions on Plasma Science. 2022. Vol. 50, no. 8. P. 2348–2363.
16. Аржанников А. В., Синицкий С. Л., Самцов Д. А. и др. Энергосодержание и спектральный состав потока субмиллиметрового излучения c длительностью 5 мкс, генерируемого в плазме при релаксации РЭП // Физика плазмы. 2022. T. 48, № 10. С. 929–936.
17. Arzhannikov A. V., Bobylev V. B., Nikolaev V. S. et al. Ribbon REB research on 0.7 MJ generator U-2 // 9-th Inter. Conf. on High-Power Particle Beams, Washington DC, May 1992. Proceedings. Vol. II: Electron beams. P. 1117–1123
18. Arzhannikov A. V., Makarov M. A., Samtsov D. A. et al. New detector and data processing procedure to measure velocity angular distribution function of magnetized relativistic electrons // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019. Vol. 942. P. 162349.
19. Popov S. S., Vyacheslavov L. N., Ivantsivskiy M. V. et al. Upgrading of Thomson scattering system for measurements of spatial dynamics of plasma heating in GOL-3 // Fusion Science and Technology. 2011. Vol. 59, no. 1. P. 292–294.
20. Бурмасов В. С., Бобылев В. Б., Иванова A. A. и др. Инфракрасный интерферометр для исследования субтермоядерной плазмы в многопробочной ловушке ГОЛ-3 // Приборы и техника эксперимента. 2012. № 2. С. 120–123.
21. Рогалин В. Е., Каплунов И. А., Кропотов Г. И. Оптические материалы для THz диапазона // Оптика и спектроскопия. 2018. Т. 125. № 6. С. 851.
22. Arzhannikov A. V., Ivanov I. A., Kuznetsov S. A. et al. Eight-Channel Polychromator for Spectral Measurements in the Frequency Band of 0.1-0.6 THz // Proceedings of the 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials. IEEE, 2021. P. 101–105.
23. Зайцев Н. И., Иляков Е. В., Ковнеристый Ю. К. и др. Калориметр для измерения энергии мощного электромагнитного импульса // Приборы и техника эксперимента. 1992. № 35. С. 153–154.
24. Аржанников А. В., Синицкий С. Л., Старостенко Д. А. и др. Пучково-плазменный генератор ТГц-излучения на основе индукционного ускорителя (проект ЛИУ-ПЭТ) // Сибирский физический журнал. 2023. Т. 18, № 1. С. 28–42.
25. Самцов Д. А., Аржанников А. В., Синицкий С. Л. и др. Частотный спектр потока излучения в интервале частот 0,1-0,6 ТГц, генерируемого на установке ГОЛ-ПЭТ в различных условиях // Известия высших учебных заведений. Радиофизика. 2022. Т. 65, № 5/6. С. 342-352. DOI: https://doi.org/10.52452/00213462_2022_65_05_342
26. Аржанников А. В., Тимофеев И. В. Интенсивное пучково-плазменное взаимодействие как источник субмиллиметрового излучения // Вестник НГУ. Серия: Физика. 2016. Т. 11, № 4. С. 78–104.
Review
For citations:
Arzhannikov A.V., Sinitsky S.L., Samtsov D.A., Kalinin P.V., Popov S.S., Atlukhanov M.G., Sandalov E.S., Stepanov V.D., Kuklin K.N., Makarov M.A. Frequency Spectrum of Radiation Flux Generated by Beam-Plasma System with Ten Joules Energy Content in Microsecond Pulse. SIBERIAN JOURNAL OF PHYSICS. 2023;18(4):79-93. https://doi.org/10.25205/2541-9447-2023-18-4-79-93