Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Electrical and Optical Switching in Vanadium Dioxide Nanostructures Decorated with Gold Nanoparticles

https://doi.org/10.25205/2541-9447-2023-18-3-71-82

Abstract

The electrical parameters of the semiconductor-metal phase transition in vanadium dioxide nanostructures synthesized by chemical vapor deposition on a silicon substrate (100) and decorated with gold nanoparticles with a surface concentration from 3∙109 to 3∙1010 cm–2 are studied. X-ray phase analysis revealed that the synthesized nanostructures of vanadium dioxide contain a monoclinic M1 phase undergoing a phase transition at a temperature of about 68 °C. The morphology of the surface of vanadium dioxide nanostructures coated with gold nanoparticles was studied using a scanning electron microscope and an atomic force microscope. The characteristics of the temperature phase transition of the initial nanostructures and nanostructures decorated with gold nanoparticles are determined. The temperature dependence of the resistance near the phase transition point of the initial nanostructures showed that the resistance jump is about four orders of magnitude, which confirms their high quality. It is shown that an increase in the surface concentration of gold particles to a value of 3∙1010 cm–2 increases the conductivity of vanadium dioxide at room temperature by about two times, and shifts the phase transition temperature by 5 °C: from 68 °C to 63 °C. Optical switching in vanadium dioxide with an array of gold particles with a size of 9 nm is considered by numerical modeling methods. It is established that the response of the electromagnetic wave from the VO2 material during the phase transition is enhanced due to the excitation of localized plasmon resonance in gold nanoparticles and reaches a local maximum in the region of 600 nm. Additionally, this effect is enhanced at angles of incidence near the pseudo-Brewster angle for vanadium dioxide. The considered hybrid VO2–Au nanostructures are promising as basic nanoelements for next-generation computers, as well as for ultrafast and highly sensitive sensors.

About the Authors

S. V. Mutilin
A.V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation

Sergey V. Mutilin, Ph.D. (Physics and Mathematics) 

Novosibirsk



А. Е. Gayduk
A.V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation

Alexey E. Gayduk, Ph.D. (Physics and Mathematics)

Novosibirsk



L. V. Yakovkina
A.V. Nikolaev Institute of Inorganic Chemistry SB RAS
Russian Federation

Lyubov V. Yakovkina, Ph.D. (Chemistry) 

Novosibirsk



А. I. Komonov
A.V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation

Alexander I. Komonov, Engineer 

Novosibirsk



R. А. Soots
A.V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation

Regina A. Soots, Leading Engineer

Novosibirsk



К. Е. Kapoguzov
A.V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation

Kirill E. Kapoguzov, Junior Researcher

Novosibirsk



S. V Golod
A.V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation

Sergey V. Golod, Ph.D. (Physics and Mathematics)

Novosibirsk



V. Ya. Prinz
A.V. Rzhanov Institute of Semiconductor Physics SB RAS
Russian Federation

Victor Ya. Prinz, Doctor of Science (Physics and Mathematics), Corresponding member of the RAS

Novosibirsk



References

1. Morin F. J. (1959) Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys Rev Lett 3:34–36. https://doi.org/10.1103/PhysRevLett.3.34

2. Stefanovich G., Pergament A., Stefanovich D. (2000) Electrical switching and Mott transition in VO2. J Phys Condens Matter 12:8837–8845. https://doi.org/10.1088/0953-8984/12/41/310

3. Becker M. F., Buckman A. B., Walser R. M., et al. (1994) Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2. Appl Phys Lett 65:1507–1509. https://doi. org/10.1063/1.112974

4. Park J. H., Coy J. M., Kasirga T. S., et al. (2013) Measurement of a solid-state triple point at the metal–insulator transition in VO2. Nature 500:431–434. https://doi.org/10.1038/nature12425

5. Koo H., Yoon S., Kwon O.-J., et al. (2012) Effect of lattice misfit on the transition temperature of VO2 thin film. J Mater Sci 47:6397–6401. https://doi.org/10.1007/s10853-012-6565-1

6. Aetukuri N. B., Gray A. X., Drouard M., et al. (2013) Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy. Nat Phys 9:661–666. https://doi. org/10.1038/nphys2733

7. Wan C., Zhang Z., Woolf D., et al. (2019) On the Optical Properties of Thin‐Film Vanadium Dioxide from the Visible to the Far Infrared. Ann Phys 531: https://doi.org/10.1002/ andp.201900188

8. Mutilin S. V., Prinz V. Y., Seleznev V. A., Yakovkina L. V. (2018) Growth of ordered arrays of vertical free-standing VO2nanowires on nanoimprinted Si. Appl Phys Lett. https://doi. org/10.1063/1.5031075

9. Prinz V. Y., Mutilin S. V., Yakovkina L. V., et al. (2020) A new approach to the fabrication of VO2 nanoswitches with ultra-low energy consumption. Nanoscale 12:3443–3454. https://doi. org/10.1039/C9NR08712E

10. Yang Z., Ko C., Ramanathan S. (2011) Oxide Electronics Utilizing Ultrafast MetalInsulator Transitions. Annu Rev Mater Res 41:337–367. https://doi.org/10.1146/annurevmatsci-062910-100347

11. Nakano M., Shibuya K., Ogawa N., et al (2013) Infrared-sensitive electrochromic device based on VO2. Appl Phys Lett 103:153503. https://doi.org/10.1063/1.4824621

12. Kats M. A., Blanchard R., Zhang S., et al. (2013) Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance. Phys Rev X 3:041004. https://doi.org/10.1103/PhysRevX.3.041004

13. Rios C., Hosseini P., Wright C. D., et al. (2014) On-Chip Photonic Memory Elements Employing Phase-Change Materials. Adv Mater 26:1372–1377. https://doi.org/10.1002/adma.201304476

14. Tan S. J., Campolongo M. J., Luo D., Cheng W. (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276. https://doi.org/10.1038/nnano.2011.49

15. Puntes V. F., Gorostiza P., Aruguete D. M., et al. (2004) Collective behaviour in twodimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nat Mater 3:263–268. https://doi.org/10.1038/nmat1094

16. Hu M.-S., Chen H.-L., Shen C.-H., et al. (2006) Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat Mater 5:102–106. https://doi.org/10.1038/nmat1564

17. Xue Y., Yin S. (2022) Element doping: a marvelous strategy for pioneering the smart applications of VO 2. Nanoscale 14:11054–11097. https://doi.org/10.1039/D2NR01864K

18. Xu G., Huang C.-M., Tazawa M., et al. (2008) Electron injection assisted phase transition in a nano-Au-VO2 junction. Appl Phys Lett 93:061911. https://doi.org/10.1063/1.2972106

19. Rashidi A., Pulford M., Hatef A. (2022) Photo-thermal-induced response of VO2@Au@Auseeds nanovesicle: A highly efficient NIR tunable nanoscatterer. Int J Therm Sci 176:107527. https://doi.org/10.1016/j.ijthermalsci.2022.107527

20. Liang J., Yu L., Wang Y., et al. (2022) Periodic Arrays of 3D AuNP‐Capped VO 2 Shells and Their Temperature‐Tunable SERS Performance. Adv Opt Mater 10:. https://doi.org/10.1002/ adom.202102615

21. Ferrara D. W., Nag J., MacQuarrie E. R., et al. (2013) Plasmonic Probe of the Semiconductor to Metal Phase Transition in Vanadium Dioxide. Nano Lett 13:4169–4175. https://doi.org/10.1021/ nl401823r

22. Maaza M., Nemraoui O., Sella C., Beye A. C. (2005) Surface Plasmon Resonance Tunability in Au−VO2 Thermochromic Nano-composites. Gold Bull 38:100–106. https://doi.org/10.1007/ BF03215243

23. Xu G., Chen Y., Tazawa M., Jin P. (2006) Surface Plasmon Resonance of Silver Nanoparticles on Vanadium Dioxide. J Phys Chem B 110:2051–2056. https://doi.org/10.1021/jp055744j

24. Xu G., Huang C.-M., Tazawa M., et al. (2009) Tunable optical properties of nano-Au on vanadium dioxide. Opt Commun 282:896–902. https://doi.org/10.1016/j.optcom.2008.11.045

25. Yakovkina L. V., Mutilin S. V., Prinz V. Y., et al. (2017) MOCVD growth and characterization of vanadium dioxide films. J Mater Sci 52:4061–4069. https://doi.org/10.1007/s10853-016- 0669-y

26. Tompkins H. G., Irene E. A. (2005) Handbook of Ellipsometry. Springer Berlin Heidelberg, Berlin, Heidelberg

27. Hormoz S., Ramanathan S. (2010) Limits on vanadium oxide Mott metal–insulator transition field-effect transistors. Solid State Electron 54:654–659. https://doi.org/10.1016/j.sse.2010.01.006

28. Lüth H. (2015) Solid Surfaces, Interfaces and Thin Films. Springer International Publishing, Cham

29. Zylbersztejn A., Mott N. F. (1975) Metal-insulator transition in vanadium dioxide. Phys Rev B 11:4383–4395. https://doi.org/10.1103/PhysRevB.11.4383

30. Khan G. R., Ahmad B. (2017) Effect of quantum confinement on thermoelectric properties of vanadium dioxide nanofilms. Appl Phys A 123:795. https://doi.org/10.1007/s00339-017-1363-x

31. Wang L., Shao Z., Li Q., et al. (2022) Dynamic Modulation of Phase Transition by External Strain Engineering in Quasi‐van der Waals Epitaxial VO 2 Films on Fluorophlogopite. Adv Mater Interfaces 9:. https://doi.org/10.1002/admi.202200864

32. Wu J., Tong L., Wang H., et al. (2022) Regulation of phase transition temperature and preparation for doping-VO2 smart thermal control films. J Appl Phys 131:. https://doi.org/10.1063/5.0054066

33. Fu Y., Song Z., Jiang M., et al. (2022) Plasmonic Hot-Electron Injection Driving Ultrafast Phase Transition in Self-Supported VO2 Films for All-Optical Modulation. ACS Photonics 9:3950–3957. https://doi.org/10.1021/acsphotonics.2c01326


Review

For citations:


Mutilin S.V., Gayduk А.Е., Yakovkina L.V., Komonov А.I., Soots R.А., Kapoguzov К.Е., Golod S.V., Prinz V.Ya. Electrical and Optical Switching in Vanadium Dioxide Nanostructures Decorated with Gold Nanoparticles. SIBERIAN JOURNAL OF PHYSICS. 2023;18(3):71-82. (In Russ.) https://doi.org/10.25205/2541-9447-2023-18-3-71-82

Views: 217


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)