Investigation of the Effect of γ-Irradiation on the Optical Properties of Lithium Niobate by Optical Absorption and Raman Scattering Methods
https://doi.org/10.25205/2541-9447-2022-17-4-95-102
Abstract
The paper presents the results of studies of the effect of γ-irradiation on the photorefractive properties of lithium niobate (LiNbO3), using optical absorption and Raman spectroscopy of Raman scattering. It is shown that with γ-irradiation, the optical density of the lithium niobate crystal increases, i.e. the shift of the optical absorption edge towards long waves, with an increase in the irradiation dose, the refractive index increases, in the interval 1300 ÷ 1600 cm–1 with γ-irradiation at a frequency of 1375 cm–1, peaks appear due to centers of significant changes in Raman scattering frequencies.
About the Authors
Z. T. AzamatovUzbekistan
Zakirzhan T. Azamatov, Doctor of Physical and Mathematical Sciences
Tashkent
M. A. Yuldoshev
Uzbekistan
Murodzhon A. Yuldoshev, doctoral student
Tashkent
N. N. Bazarbaev
Uzbekistan
Nurlan N. Bazarbaev, Senior Researcher
Tashkent
References
1. Azamatov Z. T., Yuldoshev M. A., Bazarbayev N. N. Prospects for holographic information storage systems. Lectures of the Academy of Sciences of the Republic of Uzbekistan, 2022, no. 1, pp. 17–21.
2. Azamatov Z. T., Utamuradova Sh. B., Bazarbaev N. N., Bekchanova M. R., Azamatov T. Z., Bakhromov A. B. Holographic properties of chalcogenide glassy semiconductor films. Applied Physics, 2022, no. 2, pp. 39–45.
3. Volk T., Wohlecke M. Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching. Berlin: Springer; 2008.
4. Wong K. K. Properties of lithium niobate. The Institution of Electrical Engineers. London, 2002. 411 p.
5. Maksimenko V. A., Syuy A. V., Karpets U. M. Photoinduced Processes in Niobate Crystals. Moscow: FIZMATLIT; 2008. (in Russ.)
6. Sidorov N. V., Evstratova D. V., Palatnikov M. N., Syuy A. V., Gaponov A. Yu., Antonycheva E.A. Investigation of lithium niobate photorefractive properties by photorefractive light scattering and raman spectroscopy. Ferroelectrics, 2011, pp. 148–155.
7. Khruk A. A. Structural disorder and optical processes in lithium niobate crystals with a low photorefraction effect. Apatity, 2015. 149 p.
8. Ashkin A. A., Boyd G. D., Dziedzic J. H. et al. Appl. Phys. Lett., 1966, vol. 9, no. 1, pp. 72–74.
9. Fakhri M. A., Al-Douri Y., Hashim U., Salim E. T. Optical investigation of nanophotonic lithium niobate-based optical waveguide. Applied physics B, Lasers and Optics, 2015.
10. Palatnikov M. N., Sidorov N. V., Makarova O. V., Biryukova I. V. Fundamental aspects of the technology of highly doped lithium niobate crystals. Institute of Chemistry and Technology of Rare Elements and mineral raw materials; Ed. I. V. Tananaeva. 2017. 241 p.
11. Von der Linde D., Glass A. M. Appl. Phys., 1975, vol. 8, no. 1, pp. 85–100.
12. Phillips W., Amodei J. J., Staebler D. L. RCA Rev., 1972, vol 33, no. 1, pp. 94–106.
13. Ravindra N. M., Auluck S., Srivastava V. K. On the Penn gap in semiconductors. Phys. Status Solidi (B), 1979, vol. 93, pp. 155–160.
14. Herve P. J. L., Vandamme L. K. J. Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys., 1995, vol. 77, pp. 5476–5477.
15. Penn D. R. Wave-number-dependent dielectric function of semiconductors. Phys. Rev., 1962, vol. 128, pp. 2093–2097.
16. Ghosh D. K., Samanta L. K., Bhar G. C. A simple model for evaluation of refractive indices of some binary and ternary mixed crystals. Infrared Phys., 1984, vol. 24, pp. 43–47.
Review
For citations:
Azamatov Z.T., Yuldoshev M.A., Bazarbaev N.N. Investigation of the Effect of γ-Irradiation on the Optical Properties of Lithium Niobate by Optical Absorption and Raman Scattering Methods. SIBERIAN JOURNAL OF PHYSICS. 2022;17(4):95-102. (In Russ.) https://doi.org/10.25205/2541-9447-2022-17-4-95-102