Evolution of the Beam Emittance in Linear Induction Accelerator with Discrete Focusing System
https://doi.org/10.25205/2541-9447-2022-17-4-31-44
Abstract
The paper analyzes the evolution of the emittance of a kiloampere electron beam in a linear induction accelerator (LIA) with a discrete focusing system in order to assess the possibility of its application as a driver for generating radiation according to the free electron laser (FEL) scheme. In this analysis, special attention is paid to the geometry and parameters of the electron injector, the entry of particles from which into the accelerating structure of such an LIA mainly determines the characteristics of the beam at its exit. The features of the transverse dynamics of the beam during its passage through this accelerating structure are studied. The influence of various factors contributing to an increase in the beam emittance at the output of the LIA is considered. Analytical estimates of the beam parameters are compared with the results of numerical simulation. Based on the results of comparing the measured beam emittance with its value obtained in numerical simulation, it was concluded that the beam parameters are adequate for pumping terahertz oscillations in the FEL cavity
Keywords
About the Authors
D. A. NikiforovRussian Federation
Danila A. Nikiforov, researcher
Novosibirsk
A. V. Ivanov
Russian Federation
Andrey V. Ivanov, researcher
Novosibirsk
S. L. Sinitsky
Russian Federation
Stanislav L. Sinitsky, Candidate of Physical and Mathematical Sciences
Novosibirsk
N. A. Vinokurov
Russian Federation
Nikolay A. Vinokurov, Doctor of Physical and Mathematical Sciences
Novosibirsk
A. V. Petrenko
Russian Federation
Alexey V. Petrenko, Candidate of Physical and Mathematical Sciences
Novosibirsk
P. V. Logachev
Russian Federation
Pavel V. Logachev, Doctor of Physical and Mathematical Sciences
Novosibirsk
D. I. Skovorodin
Russian Federation
Dmitrii I. Skovorodin, Candidate of Physical and Mathematical Sciences
Novosibirsk
E. S. Sandalov
Russian Federation
Evgeniy S. Sandalov, postgraduate student
Novosibirsk
V. V. Kurkuchekov
Russian Federation
Viktor V. Kurkuchekov, researcher
Novosibirsk
A. M. Batrakov
Russian Federation
Alexandr M. Batrakov, Doctor of Physical and Mathematical Sciences
Novosibirsk
A. V. Pavlenko
Russian Federation
Anton V. Pavlenko, Candidate of Physical and Mathematical Sciences
Novosibirsk
E. A. Bekhtenev
Russian Federation
Evgeny A. Bekhtenev, researcher
Novosibirsk
A. I. Senchenko
Russian Federation
Alexandr I. Senchenko, researcher
Novosibirsk
P. A. Bak
Russian Federation
Petr A. Bak, Senior Researcher
Novosibirsk
K. I. Zhivankov
Russian Federation
Kirill I. Zhivankov, researcher
Novosibirsk
O. I. Meshkov
Russian Federation
Oleg I. Meshkov, Doctor of Physical and Mathematical Sciences
Novosibirsk
O. A. Pavlov
Russian Federation
Oleg A. Pavlov, Candidate of Physical and Mathematical Sciences
Novosibirsk
G. I. Kuznetsov
Russian Federation
Gennady I. Kuznetsov, Senior Researcher
Novosibirsk
M. A. Batazova
Russian Federation
Marina A. Batazova, researcher
Novosibirsk
I. V. Zhuravlev
Russian Federation
Igor V. Zhuravlev, research engineer
Snezhinsk
O. A. Nikitin
Russian Federation
Oleg A. Nikitin, department head
Snezhinsk
I. V. Penzin
Russian Federation
Ilya V. Penzin, research engineer
Snezhinsk
D. V. Petrov
Russian Federation
Dmitry V. Petrov, chief designer
Snezhinsk
R. V. Protas
Russian Federation
Roman V. Protas, Candidate of Physical and Mathematical Sciences
Snezhinsk
References
1. Arzhannikov A. V., Ginzburg N. S., Malkin A. M. et al. Powerful Long-Pulse THz-Band Bragg FEL Based On Linear Induction Accelerator. 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019, pp. 1–2.DOI 10.1109/IRM-MW-THz.2019.8874573
2. Nikiforov D.A., Blinov M.F., Fedorov V.V. et al. High-Current Electron-Beam Transport in the LIA-5 Linear Induction Accelerator. Phys. Part. Nuclei Lett. 17, 2020, pp. 197–203. DOI 10.1134/S1547477120020156
3. Ivanov A.V., Tiunov M.A. ULTRASAM-2D code for simulation of electron guns with ultra high precision. Proceeding of EPAC-2002, Paris, 2002. Pp. 1634–1636.
4. Tiunov M. A. BEAM-2D code package for simulation of high perveance beam dynamics in long systems. Preprint, Budker INP 98-78, Novosibirsk, 1998.
5. KV-envelope code [Online]. URL: https://github.com/fuodorov/kenv.
6. S. Nagaitsev, A. Shemyakin, Beam emittance calculation in the presence of an axially symmetric magnetic field. FERMILAB-TM-2107.
7. Lund, S., Grote, D., Davidson, R. (2004). Simulations of beam emittance growthfrom the collective relaxation of space-charge non-uniformities. 2004-05-01.
8. M. Reiser.,Theory and design of charged particle beams, WILEY-VCH VerlagGmbH and Co.KGaA, Weinheim, 2008.
Review
For citations:
Nikiforov D.A., Ivanov A.V., Sinitsky S.L., Vinokurov N.A., Petrenko A.V., Logachev P.V., Skovorodin D.I., Sandalov E.S., Kurkuchekov V.V., Batrakov A.M., Pavlenko A.V., Bekhtenev E.A., Senchenko A.I., Bak P.A., Zhivankov K.I., Meshkov O.I., Pavlov O.A., Kuznetsov G.I., Batazova M.A., Zhuravlev I.V., Nikitin O.A., Penzin I.V., Petrov D.V., Protas R.V. Evolution of the Beam Emittance in Linear Induction Accelerator with Discrete Focusing System. SIBERIAN JOURNAL OF PHYSICS. 2022;17(4):31-44. (In Russ.) https://doi.org/10.25205/2541-9447-2022-17-4-31-44