Study of the Regimes of Diffusive Combustion of a Hydrogen Microjet
https://doi.org/10.25205/2541-9447-2022-17-3-12-21
Abstract
The paper presents the results of experimental studies of scenarios of diffusion combustion of a microjet of hydrogen flowing out of a cylindrical micronozzle with a diameter of 200 μm. The hydrogen microjet is ignited near the nozzle exit and at a distance. The experimental data are compared with the data previously obtained, and the results are expressed in dimensionless parameters (in terms of Reynolds numbers). It is established that the stabilization of flame during the outflow of a circular micro jet of hydrogen is associated with the presence of heating of the nozzle by a spherical flame region covering the nozzle section. The hysteresis of the diffusion combustion process of circular hydrogen microjets is shown depending on the ignition location of the microjet (near or far from the nozzle exit) and the change in the flow rate (growth or decrease).
About the Authors
V. V. KozlovRussian Federation
Viktor V. Kozlov, Doctor of Science (Physics and Mathematics), Professor, Principal Researcher; Professor
4/1 Institutskaya Str., Novosibirsk, 630090
2 Pirogov Str., Novosibirsk, 630090
M. V. Litvinenko
Russian Federation
Maria V. Litvinenko, Doctor of Science (Physics and Mathematics), Senior Researcher; Scientific Secretary Faculty of Physics
4/1 Institutskaya Str., Novosibirsk, 630090
2 Pirogov Str., Novosibirsk, 630090
Yu. А. Litvinenko
Russian Federation
Yuriy A. Litvinenko, Doctor of Science (Physics and Mathematics), Senior Scientist
4/1 Institutskaya Str., Novosibirsk, 630090
A. S. Tambovtsev
Russian Federation
Alexander S. Tambovtsev, Junior Scientist
4/1 Institutskaya Str., Novosibirsk, 630090
A. G. Shmakov
Russian Federation
Andrey G. Shmakov, Doctor of Science (Chemistry), Senior Scientist; Assistant Professor
3 Institutskaya Str., Novosibirsk, 630090
10 Plakhotny Str., Novosibirsk, 630108
References
1. Abramovich G. N. Turbulent Mixing of Gas Jets. Moscow, 1974. (in Russ.)
2. Ho C. M., Huerre P. Perturbed free shear layers. Ann. Rev. Fluid Mech., 1984, vol. 16, pp. 356– 424.
3. Michalke A. Survey on jet instability theory. Prog.Aerosp.Sci., 1984, vol. 21, no. 3, pp. 159–199. doi: 10.1016/0376-0421(84)90005-8
4. Ginevskii A. S., Vlasov E. V., Karavosov R. K. Acoustic Control of Turbulent Jets. Moscow, 2001. (in Russ.)
5. Kozlov G. V., Grek G. R., Sorokin A. M., Litvinenko Yu. A. Influence of initial conditions at the nozzle exit on the structure of a round jet. Thermophysics and Aeromechanics, 2008, vol. 15, no 1, pp. 59–73. (in Russ.)
6. Ball C. G., Fellouah H., Pollard A. The flow field in turbulent round free jets. Prog. Aerosp. Sci., 2012, vol. 50, pp. 1–26. doi: 10.1016/j.paerosci.2011.10.002
7. Rudyak V. Ya., Aniskin V. M., Kuznetsov V. V., Maslov A. A., Minakov A. V., Mironov S. G. Gas-dynamic structure and stability of gas microjets. Modeling of micro- and nanoflows. Novosibirsk, 2014. Pp. 94–114. (in Russ.)
8. Litvinenko Yu. A., Grek G. R., Kozlov V. V., Kozlov G. V. Subsonic round and flat macro- and microjets in a transverse acoustic field. Doklady Physics, 2011, vol. 436, no 1, pp. 1–7. (in Russ)
9. Litvinenko Yu. A., Grek G. R., Kozlov V. V., Korobeinichev O. P., Shmakov A. G. The structure of the attached diffusion flame of a hydrogen microjet flowing from a slotted nozzle. Vestnik NSU. Series: Physics, 2015, vol. 10, no. 2, pp. 52–66. (in Russ.)
10. Shmakov A. G., Grek G. R., Kozlov V. V., Korobeinichev O. P., Litvinenko Yu. A. Different Conditions of the Round Hydrogen Jets Diffusion Combustion in Air. Vestnik NSU. Series: Physics, 2015, vol. 10, no. 2, pp. 27–41. (in Russ.)
11. Kozlov V. V., Grek G. R., Korobeinichev O. P., Litvinenko Yu. A., Shmakov A. G. Combustion of a high-velocity hydrogen microjet effluxing in air. Doklady Physics, 2016, vol. 61, iss. 9, pp. 457–462.
12. Shmakov A. G., Grek G. R., Kozlov V. V., Litvinenko Yu. A. Influence of initial and boundary conditions at the nozzle exit upon diffusion combustion of a hydrogen microjet. Intern. J. Hydrogen Energy, 2017, vol. 42, iss. 24, pp. 15913–15924.
13. Kozlov V. V., Grek G. R., Kozlov G. V., Litvinenko Yu. A., Shmakov A. G. Experimental study of diffusion combustion of a round hydrogen microjet when it is ignited far from the nozzle exit. Siberian Journal of Physics, 2017, vol. 12, no. 3, pp. 62–73. (in Russian)
14. Kozlov V. V., Shmakov A. G., Grek G. R., Kozlov G. V., Litvinenko Y. A. Micronozzle chocking under diffusion combustion of hydrogen. Doklady Physics, 2018, vol. 63, no. 5, pp. 193–198. doi: 10.1134/S1028335818050026
15. Shmakov A. G., Grek G. R., Kozlov V. V., Kozlov G. V., Litvinenko Yu. А. Experimental Study of the Diffusion Combustion of a High-Speed Round Hydrogen Microjet. Part 1. Attached Flame, Subsonic Flow. Siberian Journal of Physics, 2017, vol. 12, no. 2, pp. 28–45. (in Russ.)
16. Kozlov V. V., Grek G. R., Litvinenko Yu. A., Shmakov A. G., Vikhorev V. V. Diffusion Combustion of Hydrogen Round Microjet at Sub- and Supersonic Velocity Efflux from Nozzle. Siberian Journal of Physics, 2018, vol. 13, no. 2, p. 37–52. (in Russ.)
17. Kozlov V. V., Grek G. R., Kozlov G. V., Litvinenko Yu. A., Shmakov A. G. Experimental study on diffusion combustion of high-speed hydrogen round microjets. International Journal of Hydrogen Energy, 2019, vol. 44, iss. 1, pp. 457–468.
18. Litvinenko Y. A., Grek G. R., Kozlov V. V., Litvinenko M. V., Shmakov A. G. Diffusion combustion of a round hydrogen microjet at sub- and supersonic jet velocity. Doklady Physics, 2020, vol. 65, no. 9, pp. 312–316. doi: 10.1134/S1028335820090074
Review
For citations:
Kozlov V.V., Litvinenko M.V., Litvinenko Yu.А., Tambovtsev A.S., Shmakov A.G. Study of the Regimes of Diffusive Combustion of a Hydrogen Microjet. SIBERIAN JOURNAL OF PHYSICS. 2022;17(3):12-21. (In Russ.) https://doi.org/10.25205/2541-9447-2022-17-3-12-21