СТАЦИОНАРНЫЙ ВДУВ / ОТСОС ВОЗДУХА В ТУРБУЛЕНТНЫЙ ПОГРАНИЧНЫЙ СЛОЙ СИММЕТРИЧНОГО КРЫЛОВОГО ПРОФИЛЯ
https://doi.org/10.25205/2541-9447-2018-13-1-33-44
Аннотация
Об авторе
В. И. КорниловРоссия
Список литературы
1. Chernyshev S. L., Kiselev A. Ph., Kuryachii A. P. Laminar flow control research at TsAGI : Past and present // Progress in Aero-space Sci. 2011. Vol. 47. P. 169-185.
2. Abbas A., de Vicente J., Valero E. Aero-dynamic technologies to improve aircraft per- formance // Aerospace Science and Techno-logy. 2013. Vol. 28. P. 100-132.
3. Hwang D. Review of research into the concept of the microblowing technique for turbulent skin friction reduction // Progress in Aerospace Sci. 2004. Vol. 40. P. 559-575.
4. Kornilov V. I. Current state and prospects of researches on the control of turbulent boundary layer by air blowing // Progress in Aerospace Sci. 2015. Vol. 76. P. 1-23.
5. Tillman T. G., Hwang D. P. Drag reduction on a large-scale nacelle using a micro-blowing technique // Proc. of the 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 1999. AIAA Paper. 1999. No. 1999 0130.
6. Kornilov V. I., Boiko A. V. Efficiency of air microblowing through microperforated wall for flat plate drag reduction // AIAA J. 2012. Vol. 50, No. 3. P. 724-732.
7. Lin Y. L., Chyu M. K., Shih T. I. P., Willis B. P., Hwang D. P. Skin friction reduction through micro blowing // AIAA Paper. 1998. No. 1998-0359.
8. Li J., Lee C.-H., Jia L., Li X. Numerical study on the flow control by micro-blowing // Proc. of 47th AIAA Aerospace Sciences Meeting, Orlando, Fl., Jan. 2009. AIAA Paper. No. 2009779.
9. Choi N. S. A study of micro-blowing technique // A Thesis of Institute for Aerospace Studies, University of Toronto. 1999.
10. Yousefi K., Saleh R., Zahedi P. Numerical study of blowing and suction slot geometry optimization on NACA 0012 airfoil // J. of Mechanical Science and Technology. 2014. Vol. 28. No.4. P. 1297- 1310.
11. Yousefi K., Saleh R. The effects of trailing edge blowing on aerodynamic characteristics of the NACA 0012 airfoil and optimization of the blowing slot geometry // J. of Theoretical and Applied Mechanics. 2014. Vol. 52. No.1. P. 165- 179.
12. Cai J., Gao Z. X. Numerical study on drag reduction by micro-blowing/suction compounding flow control on supercritical airfoil // Procedia Engineering. 2015. Vol. 99. P. 613- 617.
13. Najdat Nashat Abdulla, Sajida Lafta Ghashim Jassim. Parametric study of suction or blowing effects on turbulent flow over a flat plate // Journal of Engineering. 2010. Vol. 16. Nо. 4. P. 6164-6185.
14. Красильщиков П. П. Влияние шайб на аэродинамические характеристики крыла // Тр. ЦАГИ. 1930. Вып. 58. С. 1-31.
15. Heathcote D. J., Al-Battal N., Gursul I., Cleaver D. J. Control of wing loads by means of blowing and mini-tabs // Proc. of the European Drag Reduction and Flow Control Meeting (EDRFCM 2015). Cambridge, UK, 2015.
16. Jones B. M. The measurement of profile drag by the pitot traverse method // ARC R & M. 1936. No. 1668.
17. Gregory N., O’Reilly C. L. Low-speed aerodynamic characteristics of NACA 0012 airfoil section, including the effects of upper-surface roughness simulating hoar frost // ARC R & M. 1973. No. 3726.
Рецензия
Для цитирования:
Корнилов В.И. СТАЦИОНАРНЫЙ ВДУВ / ОТСОС ВОЗДУХА В ТУРБУЛЕНТНЫЙ ПОГРАНИЧНЫЙ СЛОЙ СИММЕТРИЧНОГО КРЫЛОВОГО ПРОФИЛЯ. Сибирский физический журнал. 2018;13(1):33-44. https://doi.org/10.25205/2541-9447-2018-13-1-33-44
For citation:
Kornilov V.I. STEADY BLOWING / SUCTION INTO TURBULENT BOUNDARY LAYER OF A SYMMETRICAL AEROFOIL SECTION. SIBERIAN JOURNAL OF PHYSICS. 2018;13(1):33-44. (In Russ.) https://doi.org/10.25205/2541-9447-2018-13-1-33-44