Investigation of the Increment of Transverse Instability of a Kiloampere Electron Beam in a Linear Induction Accelerator for Its Use in a Terahertz FEL
https://doi.org/10.25205/2541-9447-2022-17-2-16-29
Abstract
The Institute of Nuclear Physics SB RAS in cooperation with the Russian Federal Nuclear Center VNIITF performs a series of researches aimed at acquiring a relative electron beam with energy up to 20 MeV, current up to 2 kA, and duration up to 200 ns at normalized emittance ca. 1000 π∙mm∙rad in a linear induction accelerator (LIA). In order to generate electron beams with such parameters we require thorough investigation of all main sources of perturbation of electron beam trajectory caused by different instabilities that occur during the transport and acceleration of a high currency beam in the accelerating structure of LIA. For the experimental series on measuring the dynamics of transverse oscillation of a beam, we applied a set of fast current transformers which are used for registration of beam current and mode fields caused by this beam in the structure. These measurements were performed for the electron beam with the energy of 8.5 MeV and current of 1 kA going through the structure at different modes of focusing magnetic fields size in LIA. As a result, we registered oscillation of the electromagnetic field of normal modes in the accelerating modules of LIA, as well as we determined the dependence of the oscillation amplitude of these modes’ EM field on the number of accelerating module. This dependence was compared with the result of modeling of development dynamics of transverse instability in LIA that was performed using the created program system. This allowed us to determine the size of the increment of transverse instability of a relativistic electron beam under the given experimental conditions. Based on the acquired results, we made the analysis of possibility to use the beam generated in ILA as a driver for the FEL generator of coherent impulses of THz radiation within the frequency range of 0.3–1.2 THz with a sub-gigawatt level of power.
About the Authors
E. S. SandalovRussian Federation
Evgeniy S. Sandalov, postgraduate student
Novosibirsk
S. L. Sinitsky
Russian Federation
Stanislav L. Sinitsky, Candidate of Physical and Mathematical Sciences
Novosibirsk
D. I. Skovorodin
Russian Federation
Dmitrii I. Skovorodin, Candidate of Physical and Mathematical Sciences
Novosibirsk
A. V. Arzhannikov
Russian Federation
Andrey V. Arzhannikov, Doctor of Physical and Mathematical Sciences
Novosibirsk
P. V. Logachev
Russian Federation
Pavel V. Logachev, Doctor of Physical and Mathematical Sciences, Academician of the Russian Academy of Sciences
Novosibirsk
P. A. Bak
Russian Federation
Petr A. Bak, Senior Researcher
Novosibirsk
K. I. Zhivankov
Russian Federation
Kirill I. Zhivankov, researcher
Novosibirsk
D. A. Nikiforov
Russian Federation
Danila A. Nikiforov, researcher
Novosibirsk
A. V. Petrenko
Russian Federation
Alexey V. Petrenko, Candidate of Physical and Mathematical Sciences
Novosibirsk
N. S. Ginzburg
Russian Federation
Naum S. Ginzburg, Doctor of Physical and Mathematical Sciences, corresponding member of the Russian Academy of Sciences
Novosibirsk
N. Yu. Peskov
Russian Federation
Nikolai Yu. Peskov, Doctor of Physical and Mathematical Sciences
Novosibirsk
R. V. Protas
Russian Federation
Roman V. Protas, Candidate of Physical and Mathematical Sciences
Snezhinsk
References
1. Nikiforov D. A., Blinov M. F., Fedorov V. V. et al. High-Current Electron-Beam Transport in the LIA-5 Linear Induction Accelerator. Phys. Part. Nuclei Lett. 17, 2020, p. 197–203. DOI 10.1134/S1547477120020156.
2. Sinitsky S. L., Sandalov E. S., Skovorodin D. I. et al. High Current Electron Beam Transport and Focusing at the Linear Induction Accelerator. IEEE International Conference on Plasma Science (ICOPS), 2020, p. 191. DOI 10.1109/ICOPS37625.2020.9717608.
3. Ekdahl C. Modern electron accelerators for radiography, IEEE Trans. Plasma Sci., 2002, vol. 30, no. 1, p. 254–261.
4. Takayama K., Briggs R. Induction accelerators. Berlin Heidelberg: Springer, 2011.
5. Ekdahl C. Electron-Beam Corkscrew Motion in an Advanced Linear Induction Accelerator. IEEE Transactions on Plasma Science, 2021, vol. 49, no. 11, p. 3548-3553. DOI 10.1109/TPS.2021.3120877.
6. Godfrey B. B., Hughes T. P. Beam-breakup and image-displacement instability coupling impedances in high-current electron-beam induction accelerators. Proceedings of the 1989 IEEE Particle Accelerator Conference. Accelerator Science and Technology, 1989, vol. 2, p. 1023–1025. DOI 10.1109/PAC.1989.73341.
7. Ekdahl C. The Ion-Hose Instability in a High-Current Multipulse Linear Induction Accelerator. IEEE Transactions on Plasma Science, 2019, vol. 47, no. 1, p. 300–306. DOI 10.1109/TPS.2018.2872472.
8. Ekdahl C.The Resistive-Wall Instability in Multipulse Linear Induction Accelerators.IEEETransactions on Plasma Science, 2017, vol. 45, no. 5, p. 811–818. DOI 10.1109/TPS.2017.2681040.
9. Panofsky W. K. H., Bander M. Asymptotic theory of beambreakup in linear accelerators. Rev. Sci. Instrum, 1968, vol. 39, p. 206–212.
10. Neil V. K., Hall L. S., Cooper R. K. Further theoretical studies of the beam breakup instability. Particle Accel, 1979, vol. 9, no. 4, p. 213–222.
11. Лебедев А. Н., Шальнов А. В. Основы физики и техники ускорителей, 2-е изд., перераб. и доп. Энергоатомиздат, 1991. 528 с.
12. Ekdahl C., Coleman J. E., McCuistian B. T. Beam breakup in an advanced linear induction accelerator. IEEE Trans. Plasma Sci., 2016, vol. 44, no. 7, p. 1094–1102. DOI 10.1109/TPS.2016.2571123.
13. Arzhannikov A. V., Ginzburg N. S., Malkin A. M. et al. Powerful Long-Pulse THz-Band Bragg FEL Based On Linear Induction Accelerator. 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019, p. 1–2. DOI 10.1109/IRMMW-THz.2019.8874573.
14. Peskov N. Yu., Arzhannikov A. V., Ginzburg N. S. et al. Project of powerful long-pulse Bragg FEL of sub-THz to THz band: design, simulations and components testing. Proc. SPIE 11582, Fourth International Conference on Terahertz and Microwave Radiation: Generation, Detection, and Applications, 2020. DOI 10.1117/12.2579554.
15. Tan P., Huang J., Liu K. et al. Terahertz radiation sources based on free electron lasers and their applications. Science China Information Sciences, 2012, p. 1–15. DOI 10.1007/s11432-011-4515-1.
16. Shevchenko O. A., Arbuzov V. S., Vinokurov N. A. et al. The Novosibirsk Free Electron Laser – Unique Source of Terahertz and Infrared Coherent Radiation. Phys. Procedia, 2016, p. 13– 18. DOI 10.1016/j.phpro.2016.11.004.
17. Gallerano G. P. et al. The physics of and prospects for THz-compact FELs. Terahertz Science and Technology, 2014, vol. 7, no. 4, p.160.
18. Sandalov E. S., Sinitsky S. L., Skovorodin D. I. et al. Studies on Electron Beam Transport in a Linear Induction Accelerator for Free Electron Laser Application. IEEE International Conference on Plasma Science (ICOPS), 2021 p. 1–1. DOI 10.1109/ICOPS36761.2021.9588436.
19. Logachev P., Kuznetsov G., Korepanov A. et al. LIU–2 linear induction accelerator. Instrum. Experim. Techn., 2013, vol. 56, no. 6, p. 672–679. DOI 10.1134/S0020441213060195.
20. Sandalov E. S., Sinitsky S. L., Skovorodin D. I. et al. Electrodynamic System of the Linear Induction Accelerator Module. IEEE Transactions on Plasma Science, 2021, vol. 49, no. 2, p. 718–728. DOI 10.1109/TPS.2020.3045345.
21. Sandalov E. S., Sinitsky S. L., Skovorodin D. I. et al. Emittance Variation of a High-Current Relativistic Electron Beam in a Bend Magnet. IEEE Transactions on Plasma Science, 2021, vol. 49, no. 9, p. 2737–2749. DOI 10.1109/TPS.2021.3105661.
22. Lee E. P. Cancellation of the centrifugal space charge force. Part. Accel., 1990, vol. 25, p. 241.
23. Nikiforov D. A., Petrenko A. V., Sinitsky S. L. et al. Investigation of high current electron beam dynamics in linear induction accelerator for creation of a high-power THz radiation source. Journal of Instrumentation, 2021, vol.16, P. 11024. DOI 10.1088/1748-0221/16/11/P11024.
24. Ekdahl C. et al. Long-pulse beam stability experiments on the DARHT-II linear induction accelerator, IEEE Trans. Plasma Sci. 34, 2006, p. 460–466.
25. Сандалов Е. С., Синицкий С. Л., Сковородин Д. И. и др. Исследование поперечной неустойчивости сильноточного релятивистского электронного пучка в линейном индукционном ускорителе // Сибирский физический журнал. 2022. Т. 17, № 1. С. 5–22. DOI 10.25205/2541-9447-2022-17-1-5-22.
26. Sandalov E. S., Sinitsky S. L., Nikiforov D. A. et al. Theoretical and Experimental Studies on Compression and Transport of an Intense Electron Beam in the Channel of sub-mm FEL. 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMWTHz), 2022, p. 1–2. DOI 10.1109/IRMMW-THz50926.2021.9567073.
27. Ковaлев Н. Ф., Оpловa И. М., Петелин М. И. // Изв. ВУЗов: Paдиофизикa. 1968. Т. 11, № 5. С.783–786.
28. Bratman V. L., Denisov G. G., Ginzburg N. S., Petelin M. I. // IEEE J. Quant. Electr., 1983. V. QE-19, no. 3, p. 282–296. DOI 10.1109/JQE.1983.1071840.
29. Гинзбург Н. С., Малкин А. М., Песков Н. Ю., Сергеев А. С. // Письма в ЖТФ. 2006. Т. 32, № 20. С. 60–69. DOI 10.1134/S1063785006100245.
30. Arzhannikov A. V., Ginzburg N. S., Kalinin P. V. et al // Appl. Phys. Lett., 2012. V. 101, P. 083507. DOI 10.1063/1.4747149.
31. Песков Н. Ю., Гинзбург Н. С., Заславский В. Ю. и др. Мощный длинноимпульсный брэгговский ЛСЭ суб-ТГЦ/ТГц диапазона: разработка и тестирование электродинамической системы // VII Всероссийская микроволновая конференция: сборник трудов, 2020. С. 72 – 76.
Review
For citations:
Sandalov E.S., Sinitsky S.L., Skovorodin D.I., Arzhannikov A.V., Logachev P.V., Bak P.A., Zhivankov K.I., Nikiforov D.A., Petrenko A.V., Ginzburg N.S., Peskov N.Yu., Protas R.V. Investigation of the Increment of Transverse Instability of a Kiloampere Electron Beam in a Linear Induction Accelerator for Its Use in a Terahertz FEL. SIBERIAN JOURNAL OF PHYSICS. 2022;17(2):16-29. (In Russ.) https://doi.org/10.25205/2541-9447-2022-17-2-16-29