Department of Plasma Physics of the Physics Department at Novosibirsk State University
https://doi.org/10.25205/2541-9447-2022-17-1-118-141
Abstract
The article describes the system of scientific-engineering training at the Plasma Physics Department at the Physical Department, NSU with the active participation in this process of researchers from the plasma laboratories of the Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences. The text gives an idea of plasma as a subject studied in this department, and then consistently reflects the following information: the history of the department, the special courses taught in the department, the subjects of undergraduate and graduate theses, the achievements of graduates of the department in the last decade. Taking into account the main topic of scientific research in the plasma laboratories of the BINP SB RAS, the text gives an overview of the work at the plasma facilities operating at the institute and outlines the prospect of creating a next-generation linear plasma trap (GDMT). Particular attention is paid to the prospect of using open magnetic systems for hot plasma confinement in relation to solving the problem of controlled thermonuclear fusion, since these systems should serve as the field of primary activity for future graduates of the Department of Plasma Physics.
About the Authors
V. V. AnnenkovRussian Federation
Vladimir V. Annenkov, Candidate of Sciences (Physics and Mathematics)
WoS Researcher H-5894-2016
Scopus Author 55900762900
SPIN 9735-1501
Novosibirsk
A. V. Arzhannikov
Russian Federation
Andrey V. Arzhannikov, Doctor of Sciences (Physics and Mathematics), Professor
WoS Researcher C-2443-2019
Scopus Author 7004910972
Novosibirsk
P. A. Bagryansky
Russian Federation
Peter A. Bagryansky, Doctor of Sciences (Physics and Mathematics)
WoS Researcher ABB-3937-2020
Scopus Author 6603485573
SPIN 9779-7904
Novosibirsk
A. D. Beklemishev
Russian Federation
Alexei D. Beklemishev, Candidate of Sciences (Physics and Mathematics)
WoS Researcher F-7301-2014
Scopus Author 9532393600
SPIN 9163-4574
Novosibirsk
V. I. Davydenko
Russian Federation
Vladimir I. Davydenko, Doctor of Sciences (Physics and Mathematics)
Scopus Author 7005060978
SPIN 8195-1493
Novosibirsk
S. L. Sinitsky
Russian Federation
Stanislav L. Sinitsky, Candidate of Sciences (Physics and Mathematics)
WoS Researcher AET-9250-2022
Scopus Author 6603491134
SPIN 7327-3476
Novosibirsk
D. I. Skovorodin
Russian Federation
Dmitry I. Skovorodin, Candidate of Sciences (Physics and Mathematics)
WoS Researcher AAD-7116-2019
Scopus Author 37041632600
SPIN 5215-1498
Novosibirsk
A. V. Sudnikov
Russian Federation
Anton V. Sudnikov, Candidate of Sciences (Physics and Mathematics)
WoS Researcher AAB-8348-2022
Scopus Author 37073449300
SPIN 5732-0541
Novosibirsk
I. S. Chernoshtanov
Russian Federation
Ivan S. Chernoshtanov, Candidate of Sciences (Physics and Mathematics)
Scopus Author 37072056100
SPIN 1191-6208
Novosibirsk
E. A. Fedorenkov
Russian Federation
Eduard A. Fedorenkov, Secretary of Department
Scopus Author 57208029095
SPIN 8080-6364
Novosibirsk
A. A. Shoshin
Russian Federation
Andrey A. Shoshin, Candidate of Sciences (Physics and Mathematics)
WoS Researcher F-6338-2014
Scopus Author 6603339475
SPIN 7982-7407
Novosibirsk
References
1. Kruglyakov E. P., Lotov K. V., Shoshin A. A. Department of Plasma Physics. Vestnik NSU. Series: Physics, 2006, vol. 1, no. 1, pp. 13–22. (in Russ.)
2. Sotnikov O. et al. Development of high-voltage negative ion based neutral beam injector for fusion devices. Nuclear Fusion, 2021, vol. 61, p. 116017. DOI 10.1088/1741-4326/ac175a
3. Taskaev S., Berendeev E., Bikchurina M. et al. Neutron Source Based on Vacuum Insulated Tandem Accelerator and Lithium Target. Biology, 2021, no. 10, p. 350. DOI 10.3390/biology 10050350
4. Shoshin А., Burdakov A., Ivantsivskiy M. et al. Test results of boron carbide ceramics for ITER port protection. Fusion Engineering and Design, 2021, no. 168, p. 112426. DOI 10.1016/j.fusengdes.2021.112426
5. Ivanov A. A., Prikhodko V. V. Gas-dynamic trap: an overview of the concept and experimental results. Plasma Physics and Controlled Fusion, 2013, vol. 55, no. 6, p. 063001. DOI 10.1088/0741-3335/55/6/063001
6. Beklemishev A. D., Bagryansky P. A., Chaschin M. S., Soldatkina E. I. Vortex Confinement of Plasmas in Symmetric Mirror Traps. Fusion Science and Technology, 2010, vol. 57, no. 4, pp. 351–360. DOI 10.13182/FST10-A9497
7. Ivanov A. A., Prikhodko V. V. Gas dynamic trap: experimental results and future prospects. Phys. Usp., 2017, no. 60, pp. 509–533. DOI 10.3367/ UFNr.2016.09.037967
8. Yakovlev D. V., Shalashov A. G., Gospodchikov E. D. et al. Stable confinement of highelectron-temperature plasmas in the GDT experiment. Nuclear Fusion, 2018, vol. 58, p. 094001. DOI 10.1088/1741-4326/aacb88
9. Bagryansky P. A., Anikeev A. V., Denisov G. G. et al. Overview of ECR plasma heating experiment in the GDT magnetic mirror. Nuclear Fusion, 2015, vol. 55, no. 5, p. 053009. DOI 10.1088/0029-5515/55/5/053009
10. Shalashov A. G., Solomakhin A. L., Gospodchikov E. D. et al. Electron cyclotron emission at the fundamental harmonic in GDT magnetic mirror. Physics of Plasmas, 2017, vol. 24, p. 082506. DOI 10.1063/1.4994793
11. Arzhannikov A. V., Anikeev A. B., Beklemishev A. D. et al. Subcritical Assembly with Thermonuclear Neutron Source as Device for Studies of Neutron-physical Characteristics of Thorium Fuel. AIP Conference Proceedings, 2016, vol. 1771, p. 090004. DOI 10.1063/1.4964246
12. Arzhannikov A., Bedenko S., Shmakov V. et al. Gas-cooled thorium reactor at various fuel loadings and its modification by a plasma source of extra neutrons. Nuclear Science and Techniques, 2019, vol. 30 (181). DOI 10.1007/s41365-019-0707-y
13. Gota H. et al. Overview of C-2W: high temperature, steady-state beam-driven field-reversed configuration plasmas. Nuclear Fusion, 2021, vol. 61, p. 106039. DOI 10.1088/1741-4326/ac2521
14. Burdakov A. V., Postupaev V. V. Multiple-mirror trap: a path from Budker magnetic mirrors to linear fusion reactor. Phys. Usp., 2018, no. 61, pp. 582–600. DOI 10.3367/UFNr.2018. 03.038342
15. Postupaev V. V. et al. Results of the first plasma campaign in a start configuration of GOLNB multiple-mirror trap. Plasma Physics and Controlled Fusion, 2020, vol. 62, p. 025008. DOI 10.1088/1361-6587/ab53c2
16. Beklemishev A. D. Helicoidal System for Axial Plasma Pumping in Linear Traps. Fusion Science and Technology, 2013, vol. 63 (1T), pp. 355–357. DOI 10.13182/FST13-A16953
17. Beklemishev A. D. Helical plasma thruster. Phys. Plasmas, 2015, no. 22, p. 103506.
18. Arzhannikov A. V., Beklemishev A. D. Electro-jet rocket engine with big thrust at helical corrugated magnetic field. Vestnik NSU. Series: Physics, 2016, vol. 11, no. 1, pp. 107–118. (in Russ.)
19. Sudnikov A. V. et al. Preliminary experimental scaling of the helical mirror confinement effectiveness. Journal of Plasma Physics, 2020, vol. 86, no. 5, p. 905860515.
20. Arzhannikov A. V., Timofeev I. V. Generation of powerful terahertz emission in a beamdriven strong plasma turbulence. Plasma Phys. Control. Fusion, 2012, no. 54, p. 105004. DOI 10.1088/0741-3335/54/10/105004
21. Arzhannikov A. V. et al. Patent RU 2501146C1. Application: 2012130121/07, 16.07.2012.
22. Arzhannikov A. V., Ivanov I. A., Kasatov A. A. et al. Well-directed flux of megawatt submm radiation generated by a relativistic electron beam in a magnetized plasma with strong density gradients. Plasma Phys. Control. Fusion, 2020, no. 62, p. 045002. DOI 10.1088/1361-6587/ab72e3
23. Arzhannikov A. V., Kotelnikov I. A. Method for Solving the Unsteady Problem of Excitation of Ship Waves by an Underwater Object. Vestnik NSU. Series: Physics, 2015, vol. 10, no. 4, pp. 43–59. (in Russ.)
24. Arzhannikov A. V., Kotelnikov I. A. Excitation of ship waves by a submerged object: New solution to the classical problem. Phys. Rev. E, 2016, no. 94, p. 023103.
25. Arzhannikov A. V., Ginzburg N. S. et al. Development of the two-stage planar FEM for the terahertz band on the basis of the ELMI accelerator. Vestnik NSU. Series: Physics, 2012, vol. 7, no. 1, pp. 5–14. (in Russ.)
26. Arzhannikov A. V., Kalinin P. V., Kuznetsov S. A. et al. Using two-dimensional distributed feedback for synchronization of radiation from two parallel-sheet electron beams in a free – electron maser. Phys. Rev. Lett., 2016, vol. 117, no. 11, p. 114801.
27. Vyacheslavov L., Vasilyev A., Arakcheev A. et al. In sity study of the processes of damage to the tungsten surface under transient heat loads possible in ITER. Journal of Nuclear Materials, 2021, no. 544, p. 152669. DOI 10.1016/j.jnucmat.2020.152669
28. Sulyaev Yu. S., Alexandrov E. V., Burdakov A. V. et al. Engineering Calculations and Preparation for Manufacturing of ITER Equatorial port #11. IEEE Transactions on Plasma Science, 2020, vol. 48, no. 6, pp. 1631–1636. DOI 10.1109/TPS.2020.2985113
29. Bagryansky P. A., Beklemishev A. D., Postupaev V. V. Encouraging Results and New Ideas for Fusion in Linear Traps. Journal of Fusion Energy, 2018, vol. 38, no. 1, pp. 162–181. DOI 10.1007/s10894-018-0174-1
Review
For citations:
Annenkov V.V., Arzhannikov A.V., Bagryansky P.A., Beklemishev A.D., Davydenko V.I., Sinitsky S.L., Skovorodin D.I., Sudnikov A.V., Chernoshtanov I.S., Fedorenkov E.A., Shoshin A.A. Department of Plasma Physics of the Physics Department at Novosibirsk State University. SIBERIAN JOURNAL OF PHYSICS. 2022;17(1):118-141. (In Russ.) https://doi.org/10.25205/2541-9447-2022-17-1-118-141