Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Investigation of Long-Term Stability of Single-Photon Quantum Key Distribution in a Polarization Coding Scheme

https://doi.org/10.25205/2541-9447-2021-16-2-81-93

Abstract

Experimental results demonstrating long-term stability of the operation of our atmospheric quantum cryptography setup using the BB84 protocol and polarization coding are presented. It was shown that the “sifted” quantum key distribution rate and the quantum bit error rate in the key remained constant for 1 hour and were equal to 10 kbit/s and 6.5 %, respectively, at a distance between the transmitter and the receiver equal to 20 cm. Theoretical dependences of the secret quantum key generation rate on a quantum channel transmission coefficient for single-photon detectors, which were used in this experiment, and for new detectors with a reduced level of dark pulses are given.

About the Authors

A. V. Kolyako
A. V. Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Alexander V. Kolyako, Engineer

WoS Researcher ID AAD-8523-2021

Scopus Author ID 56369246900

Novosibirsk



A. S. Pleshkov
A. V. Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Siberian State University of Telecommunications and Information Science
Russian Federation

Alexander S. Pleshkov, Junior Research Fellow

WoS Researcher ID ABG-6199-2020

Scopus Author ID 56401232600

Novosibirsk



D. B. Tretyakov
A. V. Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Denis B. Tretyakov, Candidate of Science (Physics and Mathematics)

WoS Researcher ID AAD-9791-2021

Scopus Author ID 6507147052

Novosibirsk



V. M. Entin
A. V. Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Vasiliy M. Entin, Candidate of Science (Physics and Mathematics)

Novosibirsk



I. I. Ryabtsev
A. V. Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Novosibirsk State Technical University
Russian Federation

Igor I. Ryabtsev, Doctor of Science (Physics and Mathematics), Corresponding Member of RAS

Scopus Author ID 7004241094

Novosibirsk



I. G. Neizvestny
A. V. Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Igor G. Neizvestny, Doctor of Science (Physics and Mathematics), Corresponding Member of RAS

Novosibirsk



References

1. Wooters W. K., Zurek W. H. A Single Quantum Cannot Be Cloned. Nature, 1982, vol. 299, pp. 802–803.

2. Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography. Rev. of Mod. Phys., 2002, vol. 74, pp. 145–195.

3. Bennet C. H., Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proc. of IEEE Inter. Conf. on Comput. Sys. and Sign. Proces. Bangalore, India, 1984, pp. 175–179.

4. Bennet C. H., Bessette F., Brassard G., Salvail L. Experimental quantum cryptography. J. Cryptology, 1992, vol. 5, pp. 3–28.

5. Boaron A. et al. Secure Quantum Key Distribution over 421 km of Optical Fiber. Phys. Rev. Lett., 2018, vol. 121, 190502.

6. Chen J.-P. et al. Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quan tum Key Distribution over 509 km. Phys. Rev. Lett., 2020, vol. 124, 070501.

7. Liao S.-K. et al. Satellite-Relayed Intercontinental Quantum Network. Phys. Rev. Lett., 2018, vol. 120, 030501.

8. Duplinskiy A. V. et al. Quantum-Secured Data Transmission in Urban Fiber-optics Commu nication Lines. Journal of Russian Laser Research, 2018, vol. 39, p. 113.

9. Gleim A. V. et al. Multi-node quantum network based on quantum communication side fre quencies technology. In: Proc. of XVIII Int. sci.-tech. conference “Problems of technics and technologies of communications”. Kazan, 2017, pp. 65–66. (in Russ.)

10. Kynev S. M., Chistyakov V. V., Smirnov S. V., Volkova K. P., Egorov V. I., Gleim A. V. Free-space subcarrier wave quantum communication. J. Phys.: Conf. Ser., 2017, vol. 917, 052003.

11. Kravtsov K. S., Radchenko I. V., Kulik S. P., Molotkov S. N. Relativistic quantum key dis tribution system with one-way quantum communication. Scientific Reports, 2018, no. 8, 6102.

12. Tretyakov D. B., Kolyako A. V., Pleshkov A. S., Entin V. M., Ryabtsev I. I., Neizvestny I. G. Quantum Key Distribution in Single-Photon Communication System. Optoelectronics, Instru mentation and Data Processing, 2016, vol. 52, no. 5, pp. 453–461. (in Russ.)

13. Tretyakov D. B., Kolyako A. V., Pleshkov A. S., Entin V. M., Ryabtsev I. I., Neizvestny I. G. Investigation of the statistics of single-photon counting by two photodetectors for applications in quantum information. Siberian Journal of Physics, 2018, vol. 13, no. 4, pp. 91–104. (in Russ.)

14. Buttler W. T. et al. Practical Free-Space Quantum Key Distribution over 1 km. Phys. Rev. Lett., 1998, vol. 81, no. 15, pp. 3283–3286.

15. Kurtsiefer C. et al. Quantum Cryptography: A step towards global key distribution. Nature, 2002, vol. 419, p. 450.

16. Sheng-Kai Liao et al. Satellite-to-ground quantum key distribution. Nature, 2017, vol. 549, pp. 43–47.

17. Hwang Won-Young. Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett., 2003, vol. 91, 057901.


Review

For citations:


Kolyako A.V., Pleshkov A.S., Tretyakov D.B., Entin V.M., Ryabtsev I.I., Neizvestny I.G. Investigation of Long-Term Stability of Single-Photon Quantum Key Distribution in a Polarization Coding Scheme. SIBERIAN JOURNAL OF PHYSICS. 2021;16(2):81-93. (In Russ.) https://doi.org/10.25205/2541-9447-2021-16-2-81-93

Views: 235


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)