Electrical Resistivity of Aluminum under Shock Compression
https://doi.org/10.25205/2541-9447-2021-16-1-101-108
Abstract
Electrical resistance measurements of aluminum foil are conducted under shock compression using the electric contact technique. Shock wave pressure p dependences of the electrical resistance R and the resistivity ρ are obtained for pressure range up to 22 GPa. The found dependence R(p) is a monotonically increasing smooth function of the pressure. The dependence ρ(p) is more complex: with increasing pressure, the electrical resistivity first decreases and then increases.
About the Authors
S. D. GilevRussian Federation
Sergey D. Gilev, Doctor of Science, Leading Researcher
Novosibirsk
V. S. Prokopiev
Russian Federation
Vladimir S. Prokopiev, Junior Researcher
Novosibirsk
References
1. Bridgman P. W. The Resistance of 72 Elements, Alloys and Compounds to 100,000 Kg/Cm². Proceedings of the American Academy of Arts and Sciences, 1952, vol. 81, no. 4, p. 165–251.
2. Bundy F. P., Strong H. M. Behavior of Metals at High Temperatures and Pressures. Solid State Phys., 1962, vol. 13, p. 81–146.
3. Cheung J., Ashcroft N. W. Aluminum under high pressure. II. Resistivity. Physical Review B., 1979, vol. 20, no. 8, p. 2991–2998.
4. Goncharov A. I., Rodionov V. N. Electrical Resistance of Copper and Aluminum under Shock Wave Loading. In: Lavrentiev Readings in Mathematics, Mechanics, and Physics, Proc. II All-Union Conf., Book of Abstracts. Kiev, 1985, p. 72–73. (in Russ.)
5. Zhugin Yu. N., Levakova Yu. L. Effect of the Conductance and Thickness of a Conducting Plate on the Signal from a Material-Velocity Inductive Transducer. Prikl. Mekh. Tekh. Fiz., 2000, vol. 41, no. 6, p. 199–209. (in Russ.) [J. Appl. Mech. Tech. Phys., 2000, vol. 41, no. 6, p. 1136–1149. (in Eng.)]
6. Gulevich M. A., Pai V. V., Yakovlev I. V. Method for determining the electrical conductivity of nonmagnetic metals under dynamic loading. Fiz. Goreniya i Vzryva, 2010, vol. 46, no. 2, p. 121–127. (in Russ.) [Combust., Expl., Shock Waves, 2010, vol. 46, no. 2, p. 225–230. (in Eng.)]
7. Gilev S. D. Measurement of Electrical Conductivity of Condensed Substances in Shock Waves (Review). Fiz. Goreniya i Vzryva, 2011, vol. 47, no. 4, p. 2–237. (in Russ.) [Combust., Expl., Shock Waves, 2011, vol. 47, no. 4, p. 375–393. (in Eng.)]
8. Gilev S. D., Prokopiev V. S. Electrical Resistance of Copper under Shock Compression: Experimental Data. Fiz. Goreniya i Vzryva, 2016, vol. 52, no. 1, p. 121–130. (in Russ.) [Combust., Expl., Shock Waves, 2016, vol. 52, no. 1, p. 107–116. (in Eng.)]
9. Trunin R. F., Gudarenko L. F., Zhernokletov M. V., Simakov G. V. Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Matter. Inst. Exp. Phys. Russian Federal Nuclear Center, Sarov, 2006. (in Russ.)
10. Syassen K., Holzapfel W. B. Isothermal compression of Al and Ag to 120 kbar. J. Appl. Phys., 1978, vol. 49, p. 4427–4430.
11. Ziman J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford, Clarendon, 1960.
Review
For citations:
Gilev S.D., Prokopiev V.S. Electrical Resistivity of Aluminum under Shock Compression. SIBERIAN JOURNAL OF PHYSICS. 2021;16(1):101-108. (In Russ.) https://doi.org/10.25205/2541-9447-2021-16-1-101-108