A Numerical Study of the Dynamics of Gold Heating by Ultra-Short Dichromatic Laser Pulses
https://doi.org/10.25205/2541-9447-2021-16-1-5-20
Abstract
The interaction of femtosecond laser pulses of moderate intensity with metals by the example of gold is studied. The main attention is paid to dichromatic regimes of laser irradiation corresponding to a new trend in the field of laser processing of materials. Based on the two-temperature approximation, a new model is created which involves a dichromatic source of the laser radiation energy and also takes into account the influence of the electron temperature on the reflection coefficient of the irradiated material and thermophysical properties of its electronic subsystem. For numerical implementation of the model, an implicit divergent finite-difference scheme is created with an improved method for describing the melting process in comparison with previous works. The model calculations have shown that the absorption of the laser energy by gold depends on the sequence of two pulses at different wavelengths and the delay time between them, and for correct description of the absorbed energy, it is necessary to take into account the change of the reflection coefficient of the surface during irradiation. The developed model may be of interest for optimizing the processing of materials with ultra-short dichromatic laser pulses.
Keywords
About the Authors
S. A. LizunovRussian Federation
Sergey A. Lizunov, PhD student
Novosibirsk
V. P. Zhukov
Russian Federation
Vladimir P. Zhukov, Doctor of Sciences in Physics and Mathematics, Senior Scientist
Novosibirsk
A. V. Bulgakov
Russian Federation
Alexander V. Bulgakov, Doctor of Sciences in Physics and Mathematics, Principal Scientist
Novosibirsk
N. M. Bulgakova
Russian Federation
Nadezhda M. Bulgakova, Doctor of Sciences in Physics and Mathematics, Principal Scientist
Novosibirsk
References
1. Bauerle D. W. Laser Processing and Chemistry. Berlin, Springler-Verlag, 2000, 649 p.
2. Gamaly E. G., Rode A. V. Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations. Prog. Quant. Electron., 2013, vol. 37, p. 215–323.
3. Bulgakov A. V., Bulgakova N. M., Burakov I. M. et al. Nanosized material synthesis by action of high-power energy fluxes on matter. Novosibirsk, Institute of Thermophysics SB RAS, 2009, 462 p. (in Russ.)
4. Guo B., Sun J., Hua Y., Zhan N., Jia J., Chu K. Femtosecond laser micro/nanomanufacturing: Theories, measurements, methods, and applications. Nanomanufacturing and Metrology, 2020, vol. 3, p. 26–67.
5. Wellershoff S.-S, Hohlfeld J., Gudde J., Matthias E. The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A., 1999, vol. 69, p. S99–S107.
6. Korte F., Nolte S., Chichkov B. N., Bauer T., Kamlage G., Wagner T., Fallnich C., Welling H. Far-field and near field material processing with femtosecond laser pulses. Appl. Phys. A., 1999, vol. 69, p. S7–S11.
7. Bulgakova N. M., Bourakov I. M. Phase explosion under ultra-short laser ablation: Modeling with analysis of metastable state of melt. Appl. Surf. Sci., 2002, vols. 197–198, p. 41–44.
8. Pique A., Kim H., Arnold C. B. Laser forward transfer of electronic and power generating materials. In: Laser Ablation and its Application. C. Phipps (ed.). 2007. P. 339–373.
9. Eliezer S., Eliaz N., Grossman E., Fisher D., Gouzman I., Heniz Z., Pecker S., Horovitz Y., Fraenkel M., Maman S., Lereah Y. Synthesis of nanoparticles with femtosecond laser pulses. Phys. Rev. B., 2004, vol. 69, p. 144119.
10. Sibbett W., Lagatsky A. A., Brown C. The development and application of femtosecond laser systems. Opt. Express, 2012, vol. 17, p. 6989–7001.
11. Bulgakova N. M., Bulgakov A. V., Bourakov I. M., Bulgakova N. A. Pulsed laser ablation of solids and critical phenomena. Appl. Surf. Sci., 2002, vols. 197–198, p. 96–99.
12. Mo M. Z., Chen Z., Li R. K., Dunning M., Witte B. B. L., Baldwin J. K., Fletcher L. B., Kim J. B., Ng A., Redmer R., Reid A. H., Shekhar P., Shen X. Z., Shen M., SokolowskiTinten K., Tsui Y. Y., Wang Y. Q., Zheng Q., Wang X. J., Glenzer S. H. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science, 2018, vol. 360, iss. 6396, p. 1451–1454.
13. Kumata M., Tsujikawa S., Simiyoshi T., Sekita H. Dual wavelength femtosecond material processing. Proceedings of CLEO/QELS, 2007, vols. 1–5, p. 1207–1208.
14. Zoppel S., Merz R., Zehetner J., Reider G. A. Enhancement of laser ablation yield by two color excitation. Appl. Phys. A., 2005, vol. 81, p. 847–850.
15. Sugioka K., Akane T., Obata K., Toyoda K., Midorikava K. Multiwavelength excitation processing using F2 and KrF excimer lasers for precision microfabrication of hard materials. Appl. Surf. Sci., 2002, vols. 197–198, p. 814–821.
16. Zhao W., Wang W., Mei X., Jiang G., Liu B. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel. Opt. Laser. Technol., 2014, vol. 58, p. 94–99.
17. Tan B., Venkatkrishnan K., Sivakumar N. R. Laser drilling of thick material using femtosecond pulse with a focus of dual-frequency beam. Opt. Laser. Technol., 2003, vol. 35, p. 199–202.
18. Witanachchi S., Ahmed K., Sakthivel P., Mukherjee P. Dual-laser ablation for particulatefree film grouth. Appl. Phys. Lett., 1995, vol. 6, p. 1469–1471.
19. Bulgakova N. M., Zhukov V. P., Collins A. R., Rostohar D., Derrien T. J.-Y., Mocek T. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes? Appl. Surf. Sci., 2015, vol. 336, p. 364–374.
20. Anisimov S. I., Kapeliovich B. L., Perelman T. L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys.-JETP, 1974, vol. 39, p. 375–377.
21. Lin Z., Zhigilei L. V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B., 2008, vol. 77, p. 075133.
22. Ivanov D. S., Rethfeld B. The effect of pulse duration on the interplay of electron heat conduction and electron-phonon interaction: Photo-mechanical versus photo-thermal damage of metal targets. Appl. Surf. Sci., 2009, vol. 255, p. 9724–9728.
23. Shugaev M. V., He M., Lizunov S. A., Levy Y., Derrien T. J.-Y., Zhukov V. P., Bulgakova N. M., Zhigilei L. V. Insights into laser-materials interaction through modeling on atomic and macroscopic scales. In: Advances in the Application of Lasers in Materials Science, Springer Series in Materials Science. Ed. by P. M. Ossi. Cham, Switzerland, Springer, 2018, vol. 274, chapter 5, p. 107–148.
24. Bulgakova O. A. Numerical simulation of pulsed laser ablation of compound semiconductors by the example of cadmium telluride. Master thesis / Novosibirsk State University. Novosibirsk, 2012. (in Russ.)
25. Burakov I. M. A theoretical study of mechanisms and dynamics of femtosecond laser ablation. PhD thesis / Institute of Thermophysics SB RAS. Novosibirsk, 2005. (in Russ.)
26. Dresselhaus M. S. Solid State Physics. Part II: Optical Properties of Solids. MIT Solid State Physics Course, 2001.
27. Bulgakova N. M., Bulgakov A. V., Babich L. P. Energy balance of pulsed laser ablation: Thermal model revised. Appl. Phys. A., 2004, vol. 79, p. 1323–1326.
28. Shugaev M. V., Bulgakova N. M. Thermodynamic and stress analysis of laser-induced forward transfer of metals. Appl. Phys. A., 2010, vol. 101, p. 103–109.
29. Pronko P. P., Dutta S. K., Du D., Singh R. K. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses. J. Appl. Phys., 1995, vol. 78, p. 6233-6240.
Review
For citations:
Lizunov S.A., Zhukov V.P., Bulgakov A.V., Bulgakova N.M. A Numerical Study of the Dynamics of Gold Heating by Ultra-Short Dichromatic Laser Pulses. SIBERIAN JOURNAL OF PHYSICS. 2021;16(1):5-20. (In Russ.) https://doi.org/10.25205/2541-9447-2021-16-1-5-20