Preview

SIBERIAN JOURNAL OF PHYSICS

Advanced search

Distribution of Neutral Gas in the Expander of an Open Trap

https://doi.org/10.25205/2541-9447-2025-20-2-19-38

Abstract

In an open magnetic trap for confining high-temperature plasma, the key problem is longitudinal heat loss, which is addressed by a plasma flow expander. Previous studies have shown that neutral gas can reduce the expander efficiency. In this paper, a model is proposed that describes the distribution of neutral gas inside the plasma and beyond it to the expander walls. The results show that the gas concentration near and inside the plasma is orders of magnitude lower than near the walls. This indicates less stringent restrictions on the maximum concentration of neutrals inside the plasma.

About the Authors

E. A. Fedorenkov
Budker Institute of Nuclear Physics of SB RAS; Novosibirsk State University
Russian Federation

Eduard A. Fedorenkov, Junior Researcher

Novosibirsk



A. D. Beklemishev
Budker Institute of Nuclear Physics of SB RAS; Novosibirsk State University
Russian Federation

Aleksey D. Beklemishev, Candidate of Physical and Mathematical Sciences, Leading Researcher

Novosibirsk



References

1. Sudnikov A., Soldatkina E. Review of recent advances and new ideas in development of the open magnetic traps AIP Conference Proceedings. AIP Publishing, 2019, vol. 2179, no. 1.

2. Ivanov A. A., Prikhodko V. V. Gas-dynamic trap: an overview of the concept and experimental results. Plasma Physics and Controlled Fusion, 2013, vol. 55, no. 6, рр. 063001.

3. Ivanov A. A., Prikhodko V. V. Gas dynamic trap: experimental results and future prospects. Physics-Uspekhi, 2017, vol. 60, no. 5, рр. 509. (in Russ.)

4. Bagryansky P. A. Progress of open systems at Budker Institute of Nuclear Physics Journal of Plasma Physics, 2024, vol. 90, no. 2, рр. 905900218.

5. Soldatkina E. I. et al. Measurements of axial energy loss from magnetic mirror trap. Nuclear Fusion, 2020, vol. 60, no. 8, рр. 086009.

6. Soldatkina E. I. et al. Experimental issues of energy balance in open magnetic trap. Journal of Plasma Physics, 2024, vol. 90, no. 2, рр. 975900203.

7. Konkashbaev I. K., Landman I. S., Ulinich F. R. Possibility of decreasing the electron heat flux from open traps. Zh. Eksp. Teor. Fiz. 1978, vol. 74, рр. 956–964. (in Russ.)

8. Ryutov D. D. Axial electron heat loss from mirror devices revisited. Fusion science and technology, 2005, vol. 47, no. 1, рр. 148–154.

9. Skovorodin D. I. et al. Gas-dynamic multiple-mirror trap GDMT. Plasma Physics Reports, 2023, vol. 49, no. 9, рр. 1039–1086. (in Russ.)

10. Dylla H. F. A review of the wall problem and conditioning techniques for tokamaks. Journal of Nuclear Materials, 1980, vol. 93, рр. 61–74.

11. Kadomtsev M. B. et al. Ballistic model for neutral hydrogen distribution in ITER edge plasma. Proceedings of the 39th EPS Conference on Plasma Physics & 16th International Congress on Plasma Physics, Stockholm, Sweden. 2012, рр. 2–6.

12. Kukushkin A. B. et al. Ballistic model of recycling of atomic and molecular hydrogen and its application to the ITER main chamber. Plasma Physics and Controlled Fusion, 2021, vol. 63, no. 3, рр. 035025.

13. Burrell K. H. NEUCG: A transport code for hydrogen atoms in cylindrical hydrogenic plasmas. Journal of Computational Physics, 1978, vol. 27, no. 1, рр. 88–102.

14. Atalay M. A., Öztürk Ö. A. kinetic model for the transport of neutral hydrogen atoms in a hydrogen plasma. Journal of plasma physics, 2004, vol. 70, no. 3, рр. 303–315.

15. Zhogolev V. E. Reduced kinetic models of neutral transport in tokamak plasma. Plasma Physics Reports, 2012, vol l. 38, no. 10, рр. 855–855. (in Russ.)

16. Murakami I. et al. NIFS atomic and molecular numerical database for collision processes. Atoms, 2020, vol. 8, no. 4, р. 71.

17. Krstic P. S., Schultz D. R. Atomic and plasma-material interaction data for fusion. V. 8. Elastic and related transport cross sections for collisions among isotopomers of H++ H, H++ H 2, H++ He, H+ H, and H+ H 2. – 1999.

18. Skovorodin D. I. Suppression of secondary emission of electrons from end plate in expander of open trap. Physics of Plasmas, 2019, vol. 26, no. 1.

19. Beklemishev A. D., Fedorenkov E. A. Efficient method for solving the Boltzmann equation on a uniform mesh. Computational Mathematics and Mathematical Physics, 2022, vol. 62, no. 11, рр. 1900–1911. (in Russ.)


Review

For citations:


Fedorenkov E.A., Beklemishev A.D. Distribution of Neutral Gas in the Expander of an Open Trap. SIBERIAN JOURNAL OF PHYSICS. 2025;20(2):19-38. (In Russ.) https://doi.org/10.25205/2541-9447-2025-20-2-19-38

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)