Preview

Сибирский физический журнал

Расширенный поиск

Ближнепольная фотолюминесценция монослоев WS2 и MoS2, выращенных методом газофазного химического осаждения

https://doi.org/10.25205/2541-9447-2023-18-4-94-103

Аннотация

Изучена ближнепольная фотолюминесценция (нано-ФЛ), усиленная металлизированным острием зонда атомно-силового микроскопа, монослойных треугольных WS2 и MoS2 островков, выращенных с помощью газофазного химического осаждения. Для достижения максимального ближнепольного отклика от материалов WS2 и MoS2 использованы изготовленные металлизированные (Au, Ag) зонды. Установлено, что максимальный сигнал нано-ФЛ от островков наблюдается в резонансных условиях при совпадении энергии локализованного поверхностного плазмона металлизированного зонда и энергии экситонной люминесценции материала. Выполнено картирование сигнала экситонной нано-ФЛ островков WS2 и MoS2, что позволило визуализовать структурные дефекты и определить локальное изменение толщины монослойных островков с нанометровым пространственным разрешением.

Об авторах

И. А. Милёхин
Институт физики полупроводников им. А. В. Ржанова СО РАН; Новосибирский государственный университет
Россия

Илья Александрович Милёхин, PhD, младший научный сотрудник



Н. Н. Курусь
Институт физики полупроводников им. А. В. Ржанова СО РАН
Россия

Нина Николаевна Курусь, младший научный сотрудник



Л. С. Басалаева
Институт физики полупроводников им. А. В. Ржанова СО РАН
Россия

Людмила Сергеевна Басалаева, младший научный сотрудник



А. Г. Милёхин
Институт физики полупроводников им. А. В. Ржанова СО РАН
Россия

Александр Германович Милёхин, доктор физико-математических наук



Э. О. Чиглинцев
Московский физико-технический институт (Национальный исследовательский университет); Российский квантовый центр
Россия

Эмиль Олегович Чиглинцев, младший научный сотрудник



А. И. Чернов
Московский физико-технический институт (Национальный исследовательский университет)
Россия

Александр Игоревич Чернов, доктор физико-математических наук



А. В. Латышев
Институт физики полупроводников им. А. В. Ржанова СО РАН; Новосибирский государственный университет
Россия

Александр Васильевич Латышев, академик РАН, доктор физико-математических наук



Список литературы

1. Kuc A., Zibouche N., and Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2. Phys. Rev. B, 2011, no. 83, p. 245213, DOI: 10.1103/PhysRevB.83.245213.

2. Zhao W., Ghorannevis Z., Chu L., Toh M., Kloc C., Tan P.-H., and Eda G. Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Appl. Nano Mater., 2013, no. 1, pp. 791–797.

3. Zeng H., Liu G., Dai J., Yan Y., Zhu B., He R., Xie L., and Xu S. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep., 2013, vol. 3, p. 1608, 2013, DOI: 10.1038/srep01608.

4. Splendiani A., Sun L., Zhang Y., Li T., Kim J., Chim C., Galli G., and Wang F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett., 2010, vol. 10, pp. 1271–1275, DOI: 10.1021/nl903868w.

5. Nazif K. N., Daus A., Hong J., Lee N., Vaziri S., Kumar A., Nitta F., Chen M. E., Kananian S., Islam R., Kim K., Park J., Poon A. S. Y., Brongersma M. L., Pop E., and Saraswat K. C. High-specific-power flexible transition metal dichalcogenide solar cells. Nat. Commun., 2021, vol. 12, p. 7034, DOI: 10.1038/s41467-021-27195-7

6. Wang C., Yang F., and Gao Y. Nanoscale Advances transition metal dichalcogenides: from architecture to performance. Nanoscale Adv., 2020, no. 4, pp. 4323–4340, DOI: 10.1039/ d0na00501k.

7. Andrzejewski D., Oliver R., Beckmann Y., Grundmann A., Heuken M., Kalisch H., Vescan A., Kümmell T., and Bacher G. Flexible Large-Area Light-Emitting Devices Based on WS2 Monolayers. Adv. Opt. Mater., 2020, vol. 8, p. 2000694, DOI: 10.1002/adom.202000694.

8. Liu C. and Guo J. Silicon / 2D-material photodetectors : from near- infrared to mid-infrared. Light Sci. Appl., 2021, no. 10, p. 123, DOI: 10.1038/s41377-021-00551-4.

9. Li J., Su W., Chen F., Fu L., Ding S., Song K., Huang X., and Zhang L. Atypical Defect- Mediated Photoluminescence and Resonance Raman Spectroscopy of Monolayer WS 2. J. Phys. Chem. C, 2019, vol. 123, pp. 3900–3907, DOI: 10.1021/acs.jpcc.8b11647.

10. Wang J., Fang H., Wang X., Chen X., Lu W., and Hu W. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet — Visible to Infrared. Small, 2017, vol. 13, p. 1700894, DOI: 10.1002/smll.201700894.

11. Kotsakidis J. C., Zhang Q., De Parga A. L. V., Currie M., Helmerson K., Gaskill D. K., and Fuhrer M. S. Oxidation of Monolayer WS 2 in Ambient Is a Photoinduced Process, Nano Lett., 2019, vol. 19, p. 5205−5215 Letter, DOI: 10.1021/acs.nanolett.9b01599.

12. Fali A., Zhang T., Terry J. P., Kahn E., Fujisawa K., Kabius B., Koirala S., Ghafouri Y., Zhou D., Song W., Yang L., and Terrones M. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys, ACS Nano, 2021, no. 15, p. 2447−2457, DOI: 10.1021/acsnano.0c06148.

13. Su W., Kumar N., Mignuzzi S., Crain J., and Roy D. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Nanoscale, 2016, no. 8, pp. 10564–10569, DOI: 10.1039/c5nr07378b.

14. Tuladhar S. M., Kirchartz T., Schroeder B. C., andMcculloch I. Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale. Nanoscale, 2017, vol. 9, pp. 2723–2731, DOI: 10.1039/c6nr09057e.

15. Su W., Kumar N., Shu H., Lancry O., and Chaigneau M. In Situ Visualization of Optoelectronic Behavior of Grain Boundaries in Monolayer WSe 2 at the Nanoscale. J. Phys. Chem. C, 2021, vol. 125, p. 26883−26891, DOI: 10.1021/acs.jpcc.1c08064.

16. Huang T. X., Huang S. C., Li M. H., Zeng Z. C., Wang X., and Ren B.Tip-enhanced Raman spectroscopy: Tip-related issues. Anal. Bioanal. Chem., 2015, vol. 407, no. 27, pp. 8177–8195, DOI: 10.1007/s00216-015-8968-8.

17. Wang X., Huang S. C., Huang T. X., Su H. S., Zhong J. H., Zeng Z. C., Li M. H., and Ren B. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev., 2017, vol. 46, no. 13, pp. 4020–4041, DOI: 10.1039/c7cs00206h.

18. Farhat P., Olivia M., Legge S., Wang Z., and Sham T. Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence of MoS 2 Flakes Decorated with Gold Nanoparticles. J. Phys. Chem. C, 2022, no. 126, pp. 7086–7095, DOI: 10.1021/acs.jpcc.1c10186.

19. Pan Y. L. H., Milekhin I., Milekhin A. G., and Zahn D. R. T. Competing mechanisms of local photoluminescence quenching and enhancement in the quantum tunneling regime at 2D TMDC/ hBN/plasmonic interfaces. Appl. Phys. Lett., 2023, no. 122, p. 233106, DOI: 10.1063/5.0152050.

20. Milekhin A. G., Rahaman M., Rodyakina E. E., Latyshev A. V., Dzhagan V. M., and Zahn D. R. T. Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays. Nanoscale, 2018, vol. 10, no. 6, pp. 2755–2763, DOI: 10.1039/c7nr06640f.

21. Wang J., Han Z., He Z., Wang K., Liu X., and Sokolov A. V. Tip-enhanced photoluminescence of monolayer MoS2 increased and spectrally shifted by injection of electrons. Nanophotonics, 2023, vol. 12, no. 14, pp. 2937–2943, DOI: 10.1515/nanoph-2023-0025.

22. Lee H., Lee D. Y., Kang M. G., Koo Y., Kim T., and Park K. D. Tip-enhanced photoluminescence nano-spectroscopy and nano-imaging. Nanophotonics, 2020, vol. 9, no. 10, pp. 3089–3110, DOI: 10.1515/nanoph-2020-0079.

23. Shen F., Huang H., and Wen S. Generation and Detection of Strain-Localized Excitons in WS2 Monolayer by Plasmonic Metal Nanocrystals. ACS Nano, 2022, vol. 16, no. 10647–10656, DOI: 10.1021/acsnano.2c02300.

24. Chen Y., Song P., Wang C., Zhang M., Hu K., Tian Z., Su W., Chu P. K., Zhang W., and Di Z. A Versatile Approach to Create Nanobubbles on Arbitrary Two-Dimensional Materials for Imaging Exciton Localization, Adv. Mater. Interfaces, 2022, no. 9, p. 2201079, DOI: 10.1002/admi.202201079.

25. Zhang J., Yu Y., Wang P., Luo C., Wu X., Sun Z., Wang J., Da Hu W., and Shen G. Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope. InfoMat, 2019, vol. 1, no. 1, pp. 85–97, DOI: 10.1002/inf2.12002.

26. Okuno Y., Lancry O., Tempez A., Cairone C., Bosi M., Fabbri F., and Chaigneau M. Probing the nanoscale light emission properties of a CVD-grown MoS2 monolayer by tip-enhanced photoluminescence. Nanoscale, 2018, no. 10, pp. 14055–14059, DOI: 10.1039/c8nr02421a.

27. Ferrera M., Rahaman M., Sanders S., Pan Y., Milekhin I., Gemming S., Bisio A. A. F., Canepa M., and Zahn D. R. T. Controlling excitons in the quantum tunneling regime in a hybrid plasmonic/2D semiconductor interface. Appl. Phys. Rev., 2022, vol. 9, p. 031401, DOI: 10.1063/5.0078068.

28. Emitter L., Ws M., Peimyoo N., Shang J., Cong C., Shen X., Wu X., Yeow E. K. L., and Yu T. Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles. ACS Nano, 2013, no. 12, pp. 10985–10994.

29. Basalaeva L. S., Kurus N. N., Rodyakina E. E., Anikin K. V., and Milekhin A. G. Fabrication of Au and Ag – Coated AFM Probes for Tip-Enhanced Raman Spectroscopy. J. Phys. Conf. Ser., 2021, vol. 2015, no. 1, p. 012013, DOI: 10.1088/1742-6596/2015/1/012013.

30. Johnson P. B. and Christy R. W. Optical constants of the noble metals. Phys. Rev. B, 1972, vol. 6, no. 12, pp. 4370–4379, DOI: 10.1103/PhysRevB.6.4370.

31. Wang J., Han Z., He Z., Wang K., Liu X., and Sokolov A. V. Tip-enhanced photoluminescence of monolayer MoS2 increased and spectrally shifted by injection. Nanophotonics, 2023, vol. 7278, pp. 1–7, DOI: 10.1515/nanoph-2023-0025.

32. Hong J., Hu Z., Probert M., Li K., Lv D., Yang X., Gu L., Mao N., Feng Q., Xie L., Zhang J., Wu D., Zhang Z., Jin C., Ji W., Zhang X., Yuan J., and Zhang Z. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun., 2015, vol. 6, p. 6293, DOI: 10.1038/ncomms7293.

33. Lee C., Jeong B. G., Kim S. H., Kim D. H., Yun S. J., Choi W., An S., Lee D., Kim Y., Kim K. K., Lee S. M., and Jeong M. S. Investigating heterogeneous defects in single-crystalline WS 2 via tip-enhanced Raman spectroscopy. 2D Mater. Appl., 2022, vol. 6, p. 67, DOI: 10.1038/s41699-022-00334-4.


Рецензия

Для цитирования:


Милёхин И.А., Курусь Н.Н., Басалаева Л.С., Милёхин А.Г., Чиглинцев Э.О., Чернов А.И., Латышев А.В. Ближнепольная фотолюминесценция монослоев WS2 и MoS2, выращенных методом газофазного химического осаждения. Сибирский физический журнал. 2023;18(4):94-103. https://doi.org/10.25205/2541-9447-2023-18-4-94-103

For citation:


Milekhin I.A., Kurus N.N., Basalaeva L.S., Milekhin A.G., Chiglincev E.O., Chernov A.I., Latyshev A.V. Near-Field Photoluminescence of WS2 and MoS2 Monolayers, Grown by Chemical Vapor Deposition. SIBERIAN JOURNAL OF PHYSICS. 2023;18(4):94-103. (In Russ.) https://doi.org/10.25205/2541-9447-2023-18-4-94-103

Просмотров: 168


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2541-9447 (Print)