Thermophysical Properties of Chalcogenide Semiconductor Compounds and the Effect of Defects on Their Properties
https://doi.org/10.25205/2541-9447-2023-18-2-76-82
Abstract
To improve the conversion efficiency of thermoelectric devices, new thermoelectric materials are being searched and studied. The use of materials such as metal chalcogenides in engineering for the creation of converters, thermoelements, and functional electronics elements is of interest. In this regard, it is topical to study the thermophysical properties and the effect of defects on the properties of these materials. The chalcogenides of the metals of the first group have a strong dependence of their properties on the intrinsic defectiveness of the structures. An increase in the degree of imperfection causes a decrease in the phase transition temperature, which is caused by a decrease in the forces of interatomic interaction. An increase in thermal conductivity with an increase in the chalcogen content is due to the prevailing increase in the electronic thermal conductivity over a decrease in the phonon component; the value of the lattice thermal conductivity is affected by the imperfection of the crystal lattice.
About the Authors
G. A. MustafaevRussian Federation
Gusein A. Mustafaev - Doctor of Technical Sciences
Vladikavkaz
D. G. Mustafaeva
Russian Federation
Dzhamilya G. Mustafaeva - Candidate of Technical Sciences
Vladikavkaz
M. G. Mustafaev
Russian Federation
Marat G. Mustafaev - Candidate of Technical Sciences
Vladikavkaz
References
1. Zhang X., Zhao L.-D. Thermoelectric Materials: Energy Conversion between Heat and Electricity // Journal of Materiomics. 2015. Vol. 1. P. 92-105.
2. Zheng J.-C. Recent Advances on Thermoelectric Materials // Front. Phys. China. 2008. Vol. 3. № 5. P. 269-279.
3. Govardhan N., Dilip K. B., Meda K. K. State of the Art Review on Thermoelectric Materials // Int. J. Sci. Res. 2016. Vol. 5, № 10. P. 1833-1844.
4. Chen J., Li K., Liu C., Li M., Lv Y., Jia L., Jiang S. Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures // Energies. 2017. Vol. 10. P. 13291-1329-15.
5. Sharma A., Lee J. H., Kim K. H., Jung J. P. Recent Advances in Thermoelectric Power Generation Technology // J. Microelectron. Packag. Soc. 2017. Vol. 24, № 1. P. 9-16.
6. Patidar S. Applications of thermoelectric energy: a review // Int. J. Res. Appl. Sci. Eng. Technol. 2018. Vol. 6, № 5. P. 1992-1996.
7. Petsagkourakis I., Tybrandt K., Crispin X., Ohkubo I., Satoh N., Mori T. Thermoelectric materials and applications for energy harvesting power generation // Sci. Technol. Adv. Mater. 2018. Vol. 19, № 1. P. 836-862.
8. Riffat S., Ma X. Thermoelectric: A review of present and potential applications // Appl. Therm. Eng. 2003. Vol. 23, № 8. P. 913-935.
9. Dughaish Z. H. Lead Telluride as a Thermoelectric Material for Thermoelectric Power Generation // Physica B: Condensed Matter. 2002. Vol. 322. P. 205-223.
10. Liu W., Hu J., Zhang S., Deng M., Han C.-G., Liu Y. New trends, strategies and opportunities in thermoelectric materials: A perspective // Materials Today Physics. 2017. Vol. 1. P. 50-60.
11. Snyder G. J., Toberer E. S. Complex thermoelectric materials // Nat. Mater. 2008. Vol. 7. P. 105-114.
12. Sofo J. O., Mahan G. D. Optimum band gap of a thermoelectric material // Phys. Rev. B. 1994. Vol. 49, № 7. P. 4565-4570.
13. Novoselova A. V., Medvedeva Z. S., Luzhnaya N. P. Physical and chemical properties of semiconductor substances. Moscow: Nauka, 1979.
14. Stevels L. N., Jellinek F. Phase transformations in copper chalcogenides: I. The copper–selenium system // Rec. trav. Chim. 1971. Vol. 90, № 3. P. 273-283.
Review
For citations:
Mustafaev G.A., Mustafaeva D.G., Mustafaev M.G. Thermophysical Properties of Chalcogenide Semiconductor Compounds and the Effect of Defects on Their Properties. SIBERIAN JOURNAL OF PHYSICS. 2023;18(2):76-82. (In Russ.) https://doi.org/10.25205/2541-9447-2023-18-2-76-82