Научная статья

УДК 621.384.6.01 DOI 10.25205/2541-9447-2024-19-1-61-67

Анализ реализации модифицированного пирсовского электрода*

Роман Викторович Ли¹, Татьяна Александровна Девятайкина² Данила Алексеевич Никифоров³

¹⁻³Институт ядерной физики им. Г. И. Будкера СО РАН Новосибирск, Россия

¹roman.lithium@gmail.com, https://orcid.org/0009-0004-0146-8665 ²T.A.Devyataikina@inp.nsk.su, https://orcid.org/0000-0002-3404-7515 ³D.A.Nikiforov@inp.nsk.su, https://orcid.org/0000-0002-6034-5778

Аннотация

В исследовании проведен сравнительный анализ некоторых приближенных и точных решений для модифицированного формирующего электрода в пушке Пирса с тепловым зазором. С использованием численного моделирования показана степень эквивалентности разных решений с точки зрения практической реализации и качества пучка. Наконец, представлена конкретная форма модифицированного пирсовского электрода с учетом реалистичных ограничений на произвольность конструкции.

Ключевые слова

электронная пушка, пирсовский электрод, моделирование, электронный пучок

Для цитирования

Ли Р. В., Девятайкина Т. А., Никифоров Д. А. Анализ реализации модифицированного пирсовского электрода // Сибирский физический журнал. 2024. Т. 19, № 1. С. 61–67. DOI 10.25205/2541-9447-2024-19-1-61-67

Analysis of a Modified Pierce Electrode Implementation

Roman V. Li¹, Tatyana A. Devyataykina² Danila A. Nikiforov³

¹⁻³Budker Institute of Nuclear Physics SB RAS Novosibirsk, Russian Federation

¹roman.lithium@gmail.com, https://orcid.org/0009-0004-0146-8665 ²T.A.Devyataikina@inp.nsk.su, https://orcid.org/0000-0002-3404-7515 ³D.A.Nilić

³D.A.Nikiforov@inp.nsk.su, https://orcid.org/0000-0002-6034-5778

Abstract

The study provides a comparative analysis of some approximate and exact solutions for a modified forming electrode in a Pierce gun with a thermal gap. Using numerical simulation, the degree of equivalence of different solutions is shown from the point of view of practical implementation and beam quality. Finally, a specific shape of the modified Pierce electrode is presented, taking into account realistic constraints on the design freedom.

Keywords

electron gun, Pierce electrode, modelling, electron beam

^{*}Статья подготовлена по материалам конференции Russian Particle Accelerator Conference (RuPAC'23), Budker INP, 11–15 September 2023.

© Ли Р. В., Девятайкина Т. А., Никифоров Д. А., 2024

For citation

Li R. V., Devyataykina T. A., Nikiforov D. A. Analysis of a modified Pierce electrode implementation. *Siberian Journal of Physics*, 2024, vol. 19, no. 1, pp. 61–67 (in Russ). DOI 10.25205/2541-9447-2024-19-1-61-67

Введение

Задача о формировании цилиндрического электронного пучка является классической в ускорительной физике. Простейшее решение этой задачи геометрическим образом приведено Дж. Р. Пирсом и подробно рассмотрено в [1]. Решение представляет собой, в сущности, плоский электрод с половинным углом раствора 67,5°; схематическое изображение его и некоторых эквипотенциалей представлено на рис. 1. Очевидно, анод должен иметь сложную форму в виде эквипотенциали соответствующего потенциала или быть приближенным к ней. В таком случае при эмиссии в ρ-режиме (ограниченной пространственным зарядом) формируемый пучок будет состоять из параллельных и равнораспределенных по радиусу траекторий.

Рис. 1. Электрод и эквипотенциали пушки Пирса *Fig. 1.* The electrode and equipotential lines of a Pierce gun

Однако создание пирсовского электрода в исходном виде невозможно по нескольким причинам. В частности, существует необходимость обеспечивать тепловую изоляцию между катодом и формирующим электродом. Формируемый для этой цели тепловой зазор при сохранении исходной формы электрода искажает распределение потенциала вблизи катода, что ведет к резкому ухудшению качества пучка. Соответственно, встает вопрос о том, как именно можно компенсировать наличие теплового зазора, сохранив одновременно однородность и коллинеарность потока электронов.

Для реализации теплового зазора форма электрода изменяется с плоской на некоторую сложную, повторяющую форму эквипотенциали с рис. 1. Для подобных эквипотенциалей существует приближенное уравнение, однако анализ точного выражения с учетом структуры пучка является достаточно трудоемкой задачей. В связи с этим имеет смысл сравнить эти два варианта с исходной конфигурацией Пирса и определить, имеет ли смысл использовать приближенное решение вместо точного.

Для сравнительного анализа в данном исследовании использовано два критерия. С одной стороны, измерена точность совпадения кривых, соответствующих точному и приближенному решению. С другой стороны, проанализированы свойства пучка на выходе из пушки, смоделированной с помощью программного обеспечения WinSAM. На основе результатов показано, насколько оправдано использовать рассмотренный метод в качестве решения проблемы теплового зазора.

Решение уравнений на эквипотенциали

В качестве приближенного выражения для потенциала использовалась зависимость для ленточного пучка Пирса, приведенная в [1] и эквивалентная выражению

$$\phi = \frac{1}{2} \left(\frac{9J}{2} \right)^{\frac{2}{3}} Re \ w^{\frac{4}{3}}, \ w = z + i \left(R - 1 \right), \tag{1}$$

где J – плотность тока; z, R – цилиндрические координаты с осью симметрии, совпадающей с осью пучка. Катод предполагается круглым с радиусом r = 1.

Несколько вариантов построения точного решения для цилиндрического пучка приведено в работе [2], однако для нашей задачи самым удобным оказывается выражение из работы [3] (заметим, что в [2] выражение приведено с критической ошибкой):

$$\phi = \frac{1}{2} \left(\frac{9J}{2} \right)^{\frac{2}{3}} \left(Re \ w^{\frac{4}{3}} + \frac{2}{\pi} I \right),$$

$$I = \int_{1}^{R} \frac{Re \ \zeta^{\frac{4}{3}} \ dx}{\left[R(R+x)(2+R-x) \right]^{\frac{1}{2}}} \quad \left\{ E(\sigma) - \frac{2(R-1)}{(R-x)(R+x-2)} [K(\sigma) - E(\sigma)] \right\},$$

$$w = z + i(R-1), \ \zeta = z + i(x-1),$$

$$\sigma^{2} = \frac{(R-x)(R+x-2)}{(R+x)(R-x+2)},$$

$$(2)$$

где $K(\sigma)$, $E(\sigma)$ – полные эллиптические интегралы 1-го и 2-го рода. Данное выражение отличается от (1) только наличием дополнительного слагаемого в виде интеграла.

Для получения формы электрода необходимо решить уравнение $\phi(z, R) = \phi(0)$; решением же будет некоторая кривая в плоскости (*z*, *R*). Так как аналитически решить уравнение с использованием (2) не представляется возможным, уравнения были решены численно; соответствующие кривые представлены на рис. 2. Для решения уравнения задавался конкретный по-

Puc. 2. Эквипотенциали для $\phi_0 = -5$ кВ *Fig. 2.* Equipotential lines for $\phi_0 = -5$ kV

Рис. 3. Зависимость точности совпадения от напряжения на электроде *Fig. 3.* Alignment-voltage dependence for an electrode

тенциал ϕ , некоторое значение z_0 и некоторый диапазон по R; далее уравнение $\phi(_)|_{z=z_0} = \phi(0)$ решалось методом бисекции с точностью 0,1 мм (разумеется, можно использовать любой другой метод для повышения эффективности). Результат решения был представлен в виде массива точек, распределенных равномерно вдоль оси z с шагом 0,5 мм. Для генерации формы анода использовались эти же уравнения, однако решение представлялось в виде точек, равнораспределенных по R.

Для определения точности совпадения кривых была использована следующая функция точности от двух векторов *a* и *b* размерности *N*:

$$D(a, b) = 1 - \frac{2}{N} \sum_{i=1}^{N} \frac{a_i - b_i}{a_i + b_i}.$$
(3)

Данная функция равна единице для совпадающих кривых и нулю, если кривые бесконечно удалены друг от друга. При этом максимальное совпадение графиков наблюдается для $\phi_0 \sim 5 \text{ kB}$ (см. рис. 3), поэтому в данном исследовании все расчеты проводились именно для этого напряжения.

Анализ параметров пучка

Для анализа динамики пучка с помощью ПО WinSAM были смоделированы три пушки с энергией пучка 57 КэВ. Первая пушка имела в качестве формирующего электрода конус с половинным углом раствора 67,5° (пушка Пирса, схема 1), форма двух других задавалась решениями, рассмотренными в предыдущем разделе ($\phi_0 \sim -5$ кВ; приближенное и точное решения – схемы 2 и 3 соответственно). Эмитирующая поверхность имела форму плоского диска радиусом 1 мм. Эмиссия происходила в ρ -режиме, результирующие токи для трех схем составляли 2,6, 2,9 и 2,85 А соответственно.

В результате расчетов были получены картины движения электронного пучка в данных схемах, результаты моделирования представлены на рис. 5. Траектории электронов на иллюстрациях окрашены в фиолетовый цвет и направлены вправо. Слева от изображения траекторий представлены графики распределения электронной плотности (синий) и угла между на-

Рис. 4. Ядро пучка для схемы 2. Синим цветом обозначена плотность в долях целого *Fig. 4.* Beam core for the scheme 2. Blue line is the beam density in fractions of unit

правлением скорости и осью симметрии системы (зеленый) в долях относительно максимума. Зазубрины на краях графика плотности связаны с ошибкой вычисления и не несут физического смысла.

Как можно видеть из результатов моделирования, точное решение воссоздает распределение схемы Пирса гораздо качественнее. Модель пушки, основанная на приближенном решении, имеет явную склонность к концентрации электронной плотности в центре, а по краям плотность падает почти в два раза. Точное же решение имеет в первом приближении ту же степень однородности, что и схема Пирса. Однако если точное решение имеет едва заметную тенденцию концентрировать плотность в центре (аналогичную приближенному решению), то пирсовская пушка заметно концентрирует электроны на краях пучка. Предположительно, это связано с тем, что схема Пирса с плоским электродом идеальна лишь для ленточного пучка; цилиндрический же пучок будет терять однородность на расстояниях, заметно превышающих радиус катода.

Назовем ядром пучка область его однородности с точностью 97 % (см. рис. 4). Ядро пучка в случае схемы Пирса составляет 88 % распределения по радиусу; для схемы 3 (точного решения) это значение составляет 89 % (что даже лучше, чем схема Пирса). Ядро же схемы 2 (приближенного решения) занимает 71 % пучка вдоль радиуса. Доля полного тока в ядре пучка для схем 1, 2 и 3 составляет соответственно 77, 54 и 80 %. Относительный разброс по плотности вдоль радиуса составляет для трех схем соответственно 0,02, 0,10 и 0,01. Таким образом, приближенная схема показывает свою состоятельность для задачи формирования однородного пучка только на области, содержащей половину ее полного тока.

Выводы

Проведенное исследование показало, что возможна реализация теплового зазора в схеме Пирса с использованием альтернативного электрода в форме эквипотенциали цилиндрическо-

Fig. 5. Beam parameters (left) and trajectories for three schemes: Pierce scheme, approximate solution and exact solution. Blue color indicates density, green color indicates the direction angle of the beam velocity. The parameters were measured in a section at a distance of 5 mm from the cathode (blue line in the figures on the right).

го пучка. Несмотря на достаточно большую сложность выражения для подобных эквипотенциалей, оно может быть решено численно с любой необходимой точностью. Моделирование траекторий в поле такого электрода показало, что однородное ядро пучка составляет 80 % полного тока в сравнении с 77 % для конического электрода Пирса и 54 % для приближенного решения на эквипотенциали. Таким образом, рассмотренный метод можно признать рабочим.

Список литературы

- 1. Сыровой В. А. Введение в теорию интенсивных пучков заряженных частиц. М.: Энергоатомиздат, 2004.
- 2. Сыровой В. А. К задаче о формировании цилиндрического электронного пучка // Радиотехника и электроника. 2007. Т. 52. С. 634–636.
- Harker K. J. Solution of the Cauchy Problem for Laplace's Equation in Axially Symmetric Systems // J. Math. Phys. 1963. Vol. 4. P. 993.

References

- 1. Syrovoy V. A. Introduction to the theory of intense beams of charged particles. Moscow, Energoatomizdat publ., 2004. (in Russ.)
- 2. Syrovoy V. A. To the problem of the formation of a cylindrical electron beam. *Radio engineering and electronics*, 2007, vol. 52, pp. 634–636. (in Russ.)
- 3. Harker K. J. Solution of the Cauchy Problem for Laplace's Equation in Axially Symmetric Systems. J. Math. Phys., 1963, vol. 4, p. 993.

Сведения об авторах

Ли Роман Викторович, магистрант

Девятайкина Татьяна Александровна, младший научный сотрудник Никифоров Данила Алексеевич, научный сотрудник

Information about the Authors

Roman V. Li, Master Student

Tatyana A. Devyataikina, Junior Researcher Danila A. Nikiforov, Candidate of Physical and Mathematical Sciences

> Статья поступила в редакцию 13.09.2023; одобрена после рецензирования 25.09.2023; принята к публикации 13.12.2023 The article was submitted 13.09.2023;

approved after reviewing 25.09.2023; accepted for publication 13.12.2023